snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LogisticRegression(BaseTransformer):
|
57
58
|
r"""Logistic Regression (aka logit, MaxEnt) classifier
|
58
59
|
For more details on this class, see [sklearn.linear_model.LogisticRegression]
|
@@ -60,6 +61,51 @@ class LogisticRegression(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
penalty: {'l1', 'l2', 'elasticnet', None}, default='l2'
|
64
110
|
Specify the norm of the penalty:
|
65
111
|
|
@@ -171,35 +217,6 @@ class LogisticRegression(BaseTransformer):
|
|
171
217
|
to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent
|
172
218
|
to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a
|
173
219
|
combination of L1 and L2.
|
174
|
-
|
175
|
-
input_cols: Optional[Union[str, List[str]]]
|
176
|
-
A string or list of strings representing column names that contain features.
|
177
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
178
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
179
|
-
considered input columns.
|
180
|
-
|
181
|
-
label_cols: Optional[Union[str, List[str]]]
|
182
|
-
A string or list of strings representing column names that contain labels.
|
183
|
-
This is a required param for estimators, as there is no way to infer these
|
184
|
-
columns. If this parameter is not specified, then object is fitted without
|
185
|
-
labels (like a transformer).
|
186
|
-
|
187
|
-
output_cols: Optional[Union[str, List[str]]]
|
188
|
-
A string or list of strings representing column names that will store the
|
189
|
-
output of predict and transform operations. The length of output_cols must
|
190
|
-
match the expected number of output columns from the specific estimator or
|
191
|
-
transformer class used.
|
192
|
-
If this parameter is not specified, output column names are derived by
|
193
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
194
|
-
column names work for estimator's predict() method, but output_cols must
|
195
|
-
be set explicitly for transformers.
|
196
|
-
|
197
|
-
sample_weight_col: Optional[str]
|
198
|
-
A string representing the column name containing the sample weights.
|
199
|
-
This argument is only required when working with weighted datasets.
|
200
|
-
|
201
|
-
drop_input_cols: Optional[bool], default=False
|
202
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
203
220
|
"""
|
204
221
|
|
205
222
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -223,6 +240,7 @@ class LogisticRegression(BaseTransformer):
|
|
223
240
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
224
241
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
225
242
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
243
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
226
244
|
drop_input_cols: Optional[bool] = False,
|
227
245
|
sample_weight_col: Optional[str] = None,
|
228
246
|
) -> None:
|
@@ -231,9 +249,10 @@ class LogisticRegression(BaseTransformer):
|
|
231
249
|
self.set_input_cols(input_cols)
|
232
250
|
self.set_output_cols(output_cols)
|
233
251
|
self.set_label_cols(label_cols)
|
252
|
+
self.set_passthrough_cols(passthrough_cols)
|
234
253
|
self.set_drop_input_cols(drop_input_cols)
|
235
254
|
self.set_sample_weight_col(sample_weight_col)
|
236
|
-
deps = set(
|
255
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
237
256
|
|
238
257
|
self._deps = list(deps)
|
239
258
|
|
@@ -256,13 +275,14 @@ class LogisticRegression(BaseTransformer):
|
|
256
275
|
args=init_args,
|
257
276
|
klass=sklearn.linear_model.LogisticRegression
|
258
277
|
)
|
259
|
-
self._sklearn_object = sklearn.linear_model.LogisticRegression(
|
278
|
+
self._sklearn_object: Any = sklearn.linear_model.LogisticRegression(
|
260
279
|
**cleaned_up_init_args,
|
261
280
|
)
|
262
281
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
263
282
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
264
283
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
265
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LogisticRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
284
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LogisticRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
285
|
+
self._autogenerated = True
|
266
286
|
|
267
287
|
def _get_rand_id(self) -> str:
|
268
288
|
"""
|
@@ -273,24 +293,6 @@ class LogisticRegression(BaseTransformer):
|
|
273
293
|
"""
|
274
294
|
return str(uuid4()).replace("-", "_").upper()
|
275
295
|
|
276
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
277
|
-
"""
|
278
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
279
|
-
|
280
|
-
Args:
|
281
|
-
dataset: Input dataset.
|
282
|
-
"""
|
283
|
-
if not self.input_cols:
|
284
|
-
cols = [
|
285
|
-
c for c in dataset.columns
|
286
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
287
|
-
]
|
288
|
-
self.set_input_cols(input_cols=cols)
|
289
|
-
|
290
|
-
if not self.output_cols:
|
291
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
292
|
-
self.set_output_cols(output_cols=cols)
|
293
|
-
|
294
296
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LogisticRegression":
|
295
297
|
"""
|
296
298
|
Input columns setter.
|
@@ -336,54 +338,48 @@ class LogisticRegression(BaseTransformer):
|
|
336
338
|
self
|
337
339
|
"""
|
338
340
|
self._infer_input_output_cols(dataset)
|
339
|
-
if isinstance(dataset,
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
self.
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
341
|
+
if isinstance(dataset, DataFrame):
|
342
|
+
session = dataset._session
|
343
|
+
assert session is not None # keep mypy happy
|
344
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
345
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
346
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
347
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
348
|
+
|
349
|
+
# Specify input columns so column pruning will be enforced
|
350
|
+
selected_cols = self._get_active_columns()
|
351
|
+
if len(selected_cols) > 0:
|
352
|
+
dataset = dataset.select(selected_cols)
|
353
|
+
|
354
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
355
|
+
|
356
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
357
|
+
if SNOWML_SPROC_ENV in os.environ:
|
358
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
359
|
+
project=_PROJECT,
|
360
|
+
subproject=_SUBPROJECT,
|
361
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LogisticRegression.__class__.__name__),
|
362
|
+
api_calls=[Session.call],
|
363
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
364
|
+
)
|
365
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
366
|
+
pd_df.columns = dataset.columns
|
367
|
+
dataset = pd_df
|
368
|
+
|
369
|
+
model_trainer = ModelTrainerBuilder.build(
|
370
|
+
estimator=self._sklearn_object,
|
371
|
+
dataset=dataset,
|
372
|
+
input_cols=self.input_cols,
|
373
|
+
label_cols=self.label_cols,
|
374
|
+
sample_weight_col=self.sample_weight_col,
|
375
|
+
autogenerated=self._autogenerated,
|
376
|
+
subproject=_SUBPROJECT
|
377
|
+
)
|
378
|
+
self._sklearn_object = model_trainer.train()
|
355
379
|
self._is_fitted = True
|
356
380
|
self._get_model_signatures(dataset)
|
357
381
|
return self
|
358
382
|
|
359
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
360
|
-
session = dataset._session
|
361
|
-
assert session is not None # keep mypy happy
|
362
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
363
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
364
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
365
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
366
|
-
|
367
|
-
# Specify input columns so column pruning will be enforced
|
368
|
-
selected_cols = self._get_active_columns()
|
369
|
-
if len(selected_cols) > 0:
|
370
|
-
dataset = dataset.select(selected_cols)
|
371
|
-
|
372
|
-
estimator = self._sklearn_object
|
373
|
-
assert estimator is not None # Keep mypy happy
|
374
|
-
|
375
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
376
|
-
|
377
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
378
|
-
dataset,
|
379
|
-
session,
|
380
|
-
estimator,
|
381
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
382
|
-
self.input_cols,
|
383
|
-
self.label_cols,
|
384
|
-
self.sample_weight_col,
|
385
|
-
)
|
386
|
-
|
387
383
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
388
384
|
if self._drop_input_cols:
|
389
385
|
return []
|
@@ -571,11 +567,6 @@ class LogisticRegression(BaseTransformer):
|
|
571
567
|
subproject=_SUBPROJECT,
|
572
568
|
custom_tags=dict([("autogen", True)]),
|
573
569
|
)
|
574
|
-
@telemetry.add_stmt_params_to_df(
|
575
|
-
project=_PROJECT,
|
576
|
-
subproject=_SUBPROJECT,
|
577
|
-
custom_tags=dict([("autogen", True)]),
|
578
|
-
)
|
579
570
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
580
571
|
"""Predict class labels for samples in X
|
581
572
|
For more details on this function, see [sklearn.linear_model.LogisticRegression.predict]
|
@@ -629,11 +620,6 @@ class LogisticRegression(BaseTransformer):
|
|
629
620
|
subproject=_SUBPROJECT,
|
630
621
|
custom_tags=dict([("autogen", True)]),
|
631
622
|
)
|
632
|
-
@telemetry.add_stmt_params_to_df(
|
633
|
-
project=_PROJECT,
|
634
|
-
subproject=_SUBPROJECT,
|
635
|
-
custom_tags=dict([("autogen", True)]),
|
636
|
-
)
|
637
623
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
638
624
|
"""Method not supported for this class.
|
639
625
|
|
@@ -690,7 +676,8 @@ class LogisticRegression(BaseTransformer):
|
|
690
676
|
if False:
|
691
677
|
self.fit(dataset)
|
692
678
|
assert self._sklearn_object is not None
|
693
|
-
|
679
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
680
|
+
return labels
|
694
681
|
else:
|
695
682
|
raise NotImplementedError
|
696
683
|
|
@@ -726,6 +713,7 @@ class LogisticRegression(BaseTransformer):
|
|
726
713
|
output_cols = []
|
727
714
|
|
728
715
|
# Make sure column names are valid snowflake identifiers.
|
716
|
+
assert output_cols is not None # Make MyPy happy
|
729
717
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
730
718
|
|
731
719
|
return rv
|
@@ -736,11 +724,6 @@ class LogisticRegression(BaseTransformer):
|
|
736
724
|
subproject=_SUBPROJECT,
|
737
725
|
custom_tags=dict([("autogen", True)]),
|
738
726
|
)
|
739
|
-
@telemetry.add_stmt_params_to_df(
|
740
|
-
project=_PROJECT,
|
741
|
-
subproject=_SUBPROJECT,
|
742
|
-
custom_tags=dict([("autogen", True)]),
|
743
|
-
)
|
744
727
|
def predict_proba(
|
745
728
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
746
729
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -783,11 +766,6 @@ class LogisticRegression(BaseTransformer):
|
|
783
766
|
subproject=_SUBPROJECT,
|
784
767
|
custom_tags=dict([("autogen", True)]),
|
785
768
|
)
|
786
|
-
@telemetry.add_stmt_params_to_df(
|
787
|
-
project=_PROJECT,
|
788
|
-
subproject=_SUBPROJECT,
|
789
|
-
custom_tags=dict([("autogen", True)]),
|
790
|
-
)
|
791
769
|
def predict_log_proba(
|
792
770
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
793
771
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -826,16 +804,6 @@ class LogisticRegression(BaseTransformer):
|
|
826
804
|
return output_df
|
827
805
|
|
828
806
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
829
|
-
@telemetry.send_api_usage_telemetry(
|
830
|
-
project=_PROJECT,
|
831
|
-
subproject=_SUBPROJECT,
|
832
|
-
custom_tags=dict([("autogen", True)]),
|
833
|
-
)
|
834
|
-
@telemetry.add_stmt_params_to_df(
|
835
|
-
project=_PROJECT,
|
836
|
-
subproject=_SUBPROJECT,
|
837
|
-
custom_tags=dict([("autogen", True)]),
|
838
|
-
)
|
839
807
|
def decision_function(
|
840
808
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
841
809
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -938,11 +906,6 @@ class LogisticRegression(BaseTransformer):
|
|
938
906
|
subproject=_SUBPROJECT,
|
939
907
|
custom_tags=dict([("autogen", True)]),
|
940
908
|
)
|
941
|
-
@telemetry.add_stmt_params_to_df(
|
942
|
-
project=_PROJECT,
|
943
|
-
subproject=_SUBPROJECT,
|
944
|
-
custom_tags=dict([("autogen", True)]),
|
945
|
-
)
|
946
909
|
def kneighbors(
|
947
910
|
self,
|
948
911
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1002,18 +965,28 @@ class LogisticRegression(BaseTransformer):
|
|
1002
965
|
# For classifier, the type of predict is the same as the type of label
|
1003
966
|
if self._sklearn_object._estimator_type == 'classifier':
|
1004
967
|
# label columns is the desired type for output
|
1005
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
968
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1006
969
|
# rename the output columns
|
1007
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
970
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1008
971
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1009
972
|
([] if self._drop_input_cols else inputs)
|
1010
973
|
+ outputs)
|
974
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
975
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
976
|
+
# Clusterer returns int64 cluster labels.
|
977
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
978
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
979
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
980
|
+
([] if self._drop_input_cols else inputs)
|
981
|
+
+ outputs)
|
982
|
+
|
1011
983
|
# For regressor, the type of predict is float64
|
1012
984
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1013
985
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1014
986
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1015
987
|
([] if self._drop_input_cols else inputs)
|
1016
988
|
+ outputs)
|
989
|
+
|
1017
990
|
for prob_func in PROB_FUNCTIONS:
|
1018
991
|
if hasattr(self, prob_func):
|
1019
992
|
output_cols_prefix: str = f"{prob_func}_"
|