snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LogisticRegression(BaseTransformer):
57
58
  r"""Logistic Regression (aka logit, MaxEnt) classifier
58
59
  For more details on this class, see [sklearn.linear_model.LogisticRegression]
@@ -60,6 +61,51 @@ class LogisticRegression(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  penalty: {'l1', 'l2', 'elasticnet', None}, default='l2'
64
110
  Specify the norm of the penalty:
65
111
 
@@ -171,35 +217,6 @@ class LogisticRegression(BaseTransformer):
171
217
  to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent
172
218
  to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a
173
219
  combination of L1 and L2.
174
-
175
- input_cols: Optional[Union[str, List[str]]]
176
- A string or list of strings representing column names that contain features.
177
- If this parameter is not specified, all columns in the input DataFrame except
178
- the columns specified by label_cols and sample_weight_col parameters are
179
- considered input columns.
180
-
181
- label_cols: Optional[Union[str, List[str]]]
182
- A string or list of strings representing column names that contain labels.
183
- This is a required param for estimators, as there is no way to infer these
184
- columns. If this parameter is not specified, then object is fitted without
185
- labels (like a transformer).
186
-
187
- output_cols: Optional[Union[str, List[str]]]
188
- A string or list of strings representing column names that will store the
189
- output of predict and transform operations. The length of output_cols must
190
- match the expected number of output columns from the specific estimator or
191
- transformer class used.
192
- If this parameter is not specified, output column names are derived by
193
- adding an OUTPUT_ prefix to the label column names. These inferred output
194
- column names work for estimator's predict() method, but output_cols must
195
- be set explicitly for transformers.
196
-
197
- sample_weight_col: Optional[str]
198
- A string representing the column name containing the sample weights.
199
- This argument is only required when working with weighted datasets.
200
-
201
- drop_input_cols: Optional[bool], default=False
202
- If set, the response of predict(), transform() methods will not contain input columns.
203
220
  """
204
221
 
205
222
  def __init__( # type: ignore[no-untyped-def]
@@ -223,6 +240,7 @@ class LogisticRegression(BaseTransformer):
223
240
  input_cols: Optional[Union[str, Iterable[str]]] = None,
224
241
  output_cols: Optional[Union[str, Iterable[str]]] = None,
225
242
  label_cols: Optional[Union[str, Iterable[str]]] = None,
243
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
226
244
  drop_input_cols: Optional[bool] = False,
227
245
  sample_weight_col: Optional[str] = None,
228
246
  ) -> None:
@@ -231,9 +249,10 @@ class LogisticRegression(BaseTransformer):
231
249
  self.set_input_cols(input_cols)
232
250
  self.set_output_cols(output_cols)
233
251
  self.set_label_cols(label_cols)
252
+ self.set_passthrough_cols(passthrough_cols)
234
253
  self.set_drop_input_cols(drop_input_cols)
235
254
  self.set_sample_weight_col(sample_weight_col)
236
- deps = set(SklearnWrapperProvider().dependencies)
255
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
237
256
 
238
257
  self._deps = list(deps)
239
258
 
@@ -256,13 +275,14 @@ class LogisticRegression(BaseTransformer):
256
275
  args=init_args,
257
276
  klass=sklearn.linear_model.LogisticRegression
258
277
  )
259
- self._sklearn_object = sklearn.linear_model.LogisticRegression(
278
+ self._sklearn_object: Any = sklearn.linear_model.LogisticRegression(
260
279
  **cleaned_up_init_args,
261
280
  )
262
281
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
263
282
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
264
283
  self._snowpark_cols: Optional[List[str]] = self.input_cols
265
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LogisticRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
284
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LogisticRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
285
+ self._autogenerated = True
266
286
 
267
287
  def _get_rand_id(self) -> str:
268
288
  """
@@ -273,24 +293,6 @@ class LogisticRegression(BaseTransformer):
273
293
  """
274
294
  return str(uuid4()).replace("-", "_").upper()
275
295
 
276
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
277
- """
278
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
279
-
280
- Args:
281
- dataset: Input dataset.
282
- """
283
- if not self.input_cols:
284
- cols = [
285
- c for c in dataset.columns
286
- if c not in self.get_label_cols() and c != self.sample_weight_col
287
- ]
288
- self.set_input_cols(input_cols=cols)
289
-
290
- if not self.output_cols:
291
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
292
- self.set_output_cols(output_cols=cols)
293
-
294
296
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LogisticRegression":
295
297
  """
296
298
  Input columns setter.
@@ -336,54 +338,48 @@ class LogisticRegression(BaseTransformer):
336
338
  self
337
339
  """
338
340
  self._infer_input_output_cols(dataset)
339
- if isinstance(dataset, pd.DataFrame):
340
- assert self._sklearn_object is not None # keep mypy happy
341
- self._sklearn_object = self._handlers.fit_pandas(
342
- dataset,
343
- self._sklearn_object,
344
- self.input_cols,
345
- self.label_cols,
346
- self.sample_weight_col
347
- )
348
- elif isinstance(dataset, DataFrame):
349
- self._fit_snowpark(dataset)
350
- else:
351
- raise TypeError(
352
- f"Unexpected dataset type: {type(dataset)}."
353
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
354
- )
341
+ if isinstance(dataset, DataFrame):
342
+ session = dataset._session
343
+ assert session is not None # keep mypy happy
344
+ # Validate that key package version in user workspace are supported in snowflake conda channel
345
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
346
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
347
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
348
+
349
+ # Specify input columns so column pruning will be enforced
350
+ selected_cols = self._get_active_columns()
351
+ if len(selected_cols) > 0:
352
+ dataset = dataset.select(selected_cols)
353
+
354
+ self._snowpark_cols = dataset.select(self.input_cols).columns
355
+
356
+ # If we are already in a stored procedure, no need to kick off another one.
357
+ if SNOWML_SPROC_ENV in os.environ:
358
+ statement_params = telemetry.get_function_usage_statement_params(
359
+ project=_PROJECT,
360
+ subproject=_SUBPROJECT,
361
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LogisticRegression.__class__.__name__),
362
+ api_calls=[Session.call],
363
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
364
+ )
365
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
366
+ pd_df.columns = dataset.columns
367
+ dataset = pd_df
368
+
369
+ model_trainer = ModelTrainerBuilder.build(
370
+ estimator=self._sklearn_object,
371
+ dataset=dataset,
372
+ input_cols=self.input_cols,
373
+ label_cols=self.label_cols,
374
+ sample_weight_col=self.sample_weight_col,
375
+ autogenerated=self._autogenerated,
376
+ subproject=_SUBPROJECT
377
+ )
378
+ self._sklearn_object = model_trainer.train()
355
379
  self._is_fitted = True
356
380
  self._get_model_signatures(dataset)
357
381
  return self
358
382
 
359
- def _fit_snowpark(self, dataset: DataFrame) -> None:
360
- session = dataset._session
361
- assert session is not None # keep mypy happy
362
- # Validate that key package version in user workspace are supported in snowflake conda channel
363
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
364
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
365
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
366
-
367
- # Specify input columns so column pruning will be enforced
368
- selected_cols = self._get_active_columns()
369
- if len(selected_cols) > 0:
370
- dataset = dataset.select(selected_cols)
371
-
372
- estimator = self._sklearn_object
373
- assert estimator is not None # Keep mypy happy
374
-
375
- self._snowpark_cols = dataset.select(self.input_cols).columns
376
-
377
- self._sklearn_object = self._handlers.fit_snowpark(
378
- dataset,
379
- session,
380
- estimator,
381
- ["snowflake-snowpark-python"] + self._get_dependencies(),
382
- self.input_cols,
383
- self.label_cols,
384
- self.sample_weight_col,
385
- )
386
-
387
383
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
388
384
  if self._drop_input_cols:
389
385
  return []
@@ -571,11 +567,6 @@ class LogisticRegression(BaseTransformer):
571
567
  subproject=_SUBPROJECT,
572
568
  custom_tags=dict([("autogen", True)]),
573
569
  )
574
- @telemetry.add_stmt_params_to_df(
575
- project=_PROJECT,
576
- subproject=_SUBPROJECT,
577
- custom_tags=dict([("autogen", True)]),
578
- )
579
570
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
580
571
  """Predict class labels for samples in X
581
572
  For more details on this function, see [sklearn.linear_model.LogisticRegression.predict]
@@ -629,11 +620,6 @@ class LogisticRegression(BaseTransformer):
629
620
  subproject=_SUBPROJECT,
630
621
  custom_tags=dict([("autogen", True)]),
631
622
  )
632
- @telemetry.add_stmt_params_to_df(
633
- project=_PROJECT,
634
- subproject=_SUBPROJECT,
635
- custom_tags=dict([("autogen", True)]),
636
- )
637
623
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
638
624
  """Method not supported for this class.
639
625
 
@@ -690,7 +676,8 @@ class LogisticRegression(BaseTransformer):
690
676
  if False:
691
677
  self.fit(dataset)
692
678
  assert self._sklearn_object is not None
693
- return self._sklearn_object.labels_
679
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
680
+ return labels
694
681
  else:
695
682
  raise NotImplementedError
696
683
 
@@ -726,6 +713,7 @@ class LogisticRegression(BaseTransformer):
726
713
  output_cols = []
727
714
 
728
715
  # Make sure column names are valid snowflake identifiers.
716
+ assert output_cols is not None # Make MyPy happy
729
717
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
730
718
 
731
719
  return rv
@@ -736,11 +724,6 @@ class LogisticRegression(BaseTransformer):
736
724
  subproject=_SUBPROJECT,
737
725
  custom_tags=dict([("autogen", True)]),
738
726
  )
739
- @telemetry.add_stmt_params_to_df(
740
- project=_PROJECT,
741
- subproject=_SUBPROJECT,
742
- custom_tags=dict([("autogen", True)]),
743
- )
744
727
  def predict_proba(
745
728
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
746
729
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -783,11 +766,6 @@ class LogisticRegression(BaseTransformer):
783
766
  subproject=_SUBPROJECT,
784
767
  custom_tags=dict([("autogen", True)]),
785
768
  )
786
- @telemetry.add_stmt_params_to_df(
787
- project=_PROJECT,
788
- subproject=_SUBPROJECT,
789
- custom_tags=dict([("autogen", True)]),
790
- )
791
769
  def predict_log_proba(
792
770
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
793
771
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -826,16 +804,6 @@ class LogisticRegression(BaseTransformer):
826
804
  return output_df
827
805
 
828
806
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
829
- @telemetry.send_api_usage_telemetry(
830
- project=_PROJECT,
831
- subproject=_SUBPROJECT,
832
- custom_tags=dict([("autogen", True)]),
833
- )
834
- @telemetry.add_stmt_params_to_df(
835
- project=_PROJECT,
836
- subproject=_SUBPROJECT,
837
- custom_tags=dict([("autogen", True)]),
838
- )
839
807
  def decision_function(
840
808
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
841
809
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -938,11 +906,6 @@ class LogisticRegression(BaseTransformer):
938
906
  subproject=_SUBPROJECT,
939
907
  custom_tags=dict([("autogen", True)]),
940
908
  )
941
- @telemetry.add_stmt_params_to_df(
942
- project=_PROJECT,
943
- subproject=_SUBPROJECT,
944
- custom_tags=dict([("autogen", True)]),
945
- )
946
909
  def kneighbors(
947
910
  self,
948
911
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1002,18 +965,28 @@ class LogisticRegression(BaseTransformer):
1002
965
  # For classifier, the type of predict is the same as the type of label
1003
966
  if self._sklearn_object._estimator_type == 'classifier':
1004
967
  # label columns is the desired type for output
1005
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
968
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1006
969
  # rename the output columns
1007
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
970
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1008
971
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
972
  ([] if self._drop_input_cols else inputs)
1010
973
  + outputs)
974
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
975
+ # For outlier models, returns -1 for outliers and 1 for inliers.
976
+ # Clusterer returns int64 cluster labels.
977
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
978
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
979
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
980
+ ([] if self._drop_input_cols else inputs)
981
+ + outputs)
982
+
1011
983
  # For regressor, the type of predict is float64
1012
984
  elif self._sklearn_object._estimator_type == 'regressor':
1013
985
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1014
986
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1015
987
  ([] if self._drop_input_cols else inputs)
1016
988
  + outputs)
989
+
1017
990
  for prob_func in PROB_FUNCTIONS:
1018
991
  if hasattr(self, prob_func):
1019
992
  output_cols_prefix: str = f"{prob_func}_"