snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -27,14 +27,29 @@ class MaxAbsScaler(base.BaseTransformer):
27
27
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html).
28
28
 
29
29
  Args:
30
- input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
31
- output_cols: The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
30
+ input_cols: Optional[Union[str, List[str]]], default=None
31
+ The name(s) of one or more columns in a DataFrame containing a feature to be scaled.
32
+
33
+ output_cols: Optional[Union[str, List[str]]], default=None
34
+ The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
32
35
  columns specified must match the number of input columns.
33
- drop_input_cols: Remove input columns from output if set True. False by default.
36
+
37
+ passthrough_cols: Optional[Union[str, List[str]]], default=None
38
+ A string or a list of strings indicating column names to be excluded from any
39
+ operations (such as train, transform, or inference). These specified column(s)
40
+ will remain untouched throughout the process. This option is helpful in scenarios
41
+ requiring automatic input_cols inference, but need to avoid using specific
42
+ columns, like index columns, during training or inference.
43
+
44
+ drop_input_cols: Optional[bool], default=False
45
+ Remove input columns from output if set True. False by default.
34
46
 
35
47
  Attributes:
36
- scale_: dict {column_name: value} or None. Per-feature relative scaling factor.
37
- max_abs_: dict {column_name: value} or None. Per-feature maximum absolute value.
48
+ scale_: Dict[str, float]
49
+ dict {column_name: value} or None. Per-feature relative scaling factor.
50
+
51
+ max_abs_: Dict[str, float]
52
+ dict {column_name: value} or None. Per-feature maximum absolute value.
38
53
  """
39
54
 
40
55
  def __init__(
@@ -42,6 +57,7 @@ class MaxAbsScaler(base.BaseTransformer):
42
57
  *,
43
58
  input_cols: Optional[Union[str, Iterable[str]]] = None,
44
59
  output_cols: Optional[Union[str, Iterable[str]]] = None,
60
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
45
61
  drop_input_cols: Optional[bool] = False,
46
62
  ) -> None:
47
63
  """
@@ -55,6 +71,11 @@ class MaxAbsScaler(base.BaseTransformer):
55
71
  Args:
56
72
  input_cols: Single or multiple input columns.
57
73
  output_cols: Single or multiple output columns.
74
+ passthrough_cols: A string or a list of strings indicating column names to be excluded from any
75
+ operations (such as train, transform, or inference). These specified column(s)
76
+ will remain untouched throughout the process. This option is helful in scenarios
77
+ requiring automatic input_cols inference, but need to avoid using specific
78
+ columns, like index columns, during in training or inference.
58
79
  drop_input_cols: Remove input columns from output if set True. False by default.
59
80
 
60
81
  Attributes:
@@ -74,6 +95,7 @@ class MaxAbsScaler(base.BaseTransformer):
74
95
 
75
96
  self.set_input_cols(input_cols)
76
97
  self.set_output_cols(output_cols)
98
+ self.set_passthrough_cols(passthrough_cols)
77
99
 
78
100
  def _reset(self) -> None:
79
101
  """
@@ -138,10 +160,6 @@ class MaxAbsScaler(base.BaseTransformer):
138
160
  project=base.PROJECT,
139
161
  subproject=base.SUBPROJECT,
140
162
  )
141
- @telemetry.add_stmt_params_to_df(
142
- project=base.PROJECT,
143
- subproject=base.SUBPROJECT,
144
- )
145
163
  def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
146
164
  """
147
165
  Scale the data.
@@ -21,20 +21,45 @@ class MinMaxScaler(base.BaseTransformer):
21
21
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html).
22
22
 
23
23
  Args:
24
- feature_range: Desired range of transformed data (default is 0 to 1).
25
- clip: Whether to clip transformed values of held-out data to the specified feature range (default is True).
26
- input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be scaled. Each specified
24
+ feature_range: Tuple[float, float], default=(0, 1)
25
+ Desired range of transformed data (default is 0 to 1).
26
+
27
+ clip: bool, default=False
28
+ Whether to clip transformed values of held-out data to the specified feature range (default is True).
29
+
30
+ input_cols: Optional[Union[str, List[str]]], default=None
31
+ The name(s) of one or more columns in a DataFrame containing a feature to be scaled. Each specified
27
32
  input column is scaled independently and stored in the corresponding output column.
28
- output_cols: The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
33
+
34
+ output_cols: Optional[Union[str, List[str]]], default=None
35
+ The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
29
36
  columns specified must match the number of input columns.
30
- drop_input_cols: Remove input columns from output if set True. False by default.
37
+
38
+ passthrough_cols: Optional[Union[str, List[str]]], default=None
39
+ A string or a list of strings indicating column names to be excluded from any
40
+ operations (such as train, transform, or inference). These specified column(s)
41
+ will remain untouched throughout the process. This option is helpful in scenarios
42
+ requiring automatic input_cols inference, but need to avoid using specific
43
+ columns, like index columns, during training or inference.
44
+
45
+ drop_input_cols: Optional[bool], default=False
46
+ Remove input columns from output if set True. False by default.
31
47
 
32
48
  Attributes:
33
- min_: dict {column_name: value} or None. Per-feature adjustment for minimum.
34
- scale_: dict {column_name: value} or None. Per-feature relative scaling factor.
35
- data_min_: dict {column_name: value} or None. Per-feature minimum seen in the data.
36
- data_max_: dict {column_name: value} or None. Per-feature maximum seen in the data.
37
- data_range_: dict {column_name: value} or None. Per-feature range seen in the data as a (min, max) tuple.
49
+ min_: Dict[str, float]
50
+ dict {column_name: value} or None. Per-feature adjustment for minimum.
51
+
52
+ scale_: Dict[str, float]
53
+ dict {column_name: value} or None. Per-feature relative scaling factor.
54
+
55
+ data_min_: Dict[str, float]
56
+ dict {column_name: value} or None. Per-feature minimum seen in the data.
57
+
58
+ data_max_: Dict[str, float]
59
+ dict {column_name: value} or None. Per-feature maximum seen in the data.
60
+
61
+ data_range_: Dict[str, float]
62
+ dict {column_name: value} or None. Per-feature range seen in the data as a (min, max) tuple.
38
63
  """
39
64
 
40
65
  def __init__(
@@ -44,6 +69,7 @@ class MinMaxScaler(base.BaseTransformer):
44
69
  clip: bool = False,
45
70
  input_cols: Optional[Union[str, Iterable[str]]] = None,
46
71
  output_cols: Optional[Union[str, Iterable[str]]] = None,
72
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
47
73
  drop_input_cols: Optional[bool] = False,
48
74
  ) -> None:
49
75
  """
@@ -54,6 +80,11 @@ class MinMaxScaler(base.BaseTransformer):
54
80
  clip: Set to True to clip transformed values of held-out data to provided `feature range`.
55
81
  input_cols: Single or multiple input columns.
56
82
  output_cols: Single or multiple output columns.
83
+ passthrough_cols: A string or a list of strings indicating column names to be excluded from any
84
+ operations (such as train, transform, or inference). These specified column(s)
85
+ will remain untouched throughout the process. This option is helful in scenarios
86
+ requiring automatic input_cols inference, but need to avoid using specific
87
+ columns, like index columns, during in training or inference.
57
88
  drop_input_cols: Remove input columns from output if set True. False by default.
58
89
 
59
90
  Attributes:
@@ -78,6 +109,7 @@ class MinMaxScaler(base.BaseTransformer):
78
109
 
79
110
  self.set_input_cols(input_cols)
80
111
  self.set_output_cols(output_cols)
112
+ self.set_passthrough_cols(passthrough_cols)
81
113
 
82
114
  def _reset(self) -> None:
83
115
  """
@@ -158,10 +190,6 @@ class MinMaxScaler(base.BaseTransformer):
158
190
  project=base.PROJECT,
159
191
  subproject=base.SUBPROJECT,
160
192
  )
161
- @telemetry.add_stmt_params_to_df(
162
- project=base.PROJECT,
163
- subproject=base.SUBPROJECT,
164
- )
165
193
  def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
166
194
  """
167
195
  Scale features according to feature_range.
@@ -34,6 +34,13 @@ class Normalizer(base.BaseTransformer):
34
34
  A string or list of strings representing column names that will store the output of transform operation.
35
35
  The length of `output_cols` must equal the length of `input_cols`.
36
36
 
37
+ passthrough_cols: Optional[Union[str, List[str]]]
38
+ A string or a list of strings indicating column names to be excluded from any
39
+ operations (such as train, transform, or inference). These specified column(s)
40
+ will remain untouched throughout the process. This option is helpful in scenarios
41
+ requiring automatic input_cols inference, but need to avoid using specific
42
+ columns, like index columns, during training or inference.
43
+
37
44
  drop_input_cols: bool, default=False
38
45
  Remove input columns from output if set `True`.
39
46
  """
@@ -44,6 +51,7 @@ class Normalizer(base.BaseTransformer):
44
51
  norm: str = "l2",
45
52
  input_cols: Optional[Union[str, Iterable[str]]] = None,
46
53
  output_cols: Optional[Union[str, Iterable[str]]] = None,
54
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
47
55
  drop_input_cols: Optional[bool] = False,
48
56
  ) -> None:
49
57
  super().__init__(drop_input_cols=drop_input_cols)
@@ -51,6 +59,7 @@ class Normalizer(base.BaseTransformer):
51
59
  self._is_fitted = False
52
60
  self.set_input_cols(input_cols)
53
61
  self.set_output_cols(output_cols)
62
+ self.set_passthrough_cols(passthrough_cols)
54
63
 
55
64
  def _reset(self) -> None:
56
65
  """
@@ -82,10 +91,6 @@ class Normalizer(base.BaseTransformer):
82
91
  project=base.PROJECT,
83
92
  subproject=base.SUBPROJECT,
84
93
  )
85
- @telemetry.add_stmt_params_to_df(
86
- project=base.PROJECT,
87
- subproject=base.SUBPROJECT,
88
- )
89
94
  def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
90
95
  """
91
96
  Scale each non-zero row of the input dataset to the unit norm.
@@ -38,7 +38,7 @@ _N_FEATURES_OUT = "_N_FEATURES_OUT"
38
38
  # transformer with the sklearn version
39
39
  _SKLEARN_INITIAL_KEYWORDS = ("sparse", "handle_unknown") # initial keywords in sklearn
40
40
  _SKLEARN_UNUSED_KEYWORDS = "dtype" # sklearn keywords that are unused in snowml
41
- _SNOWML_ONLY_KEYWORDS = ["input_cols", "output_cols"] # snowml only keywords not present in sklearn
41
+ _SNOWML_ONLY_KEYWORDS = ["input_cols", "output_cols", "passthrough_cols"] # snowml only keywords not present in sklearn
42
42
 
43
43
  # Added keywords mapped to the sklearn versions in which they were added. Update mappings in new
44
44
  # sklearn versions to support parameter validation.
@@ -101,7 +101,7 @@ class OneHotEncoder(base.BaseTransformer):
101
101
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html).
102
102
 
103
103
  Args:
104
- categories: 'auto' or dict {column_name: ndarray([category])}, default='auto'
104
+ categories: 'auto' or dict {column_name: np.ndarray([category])}, default='auto'
105
105
  Categories (unique values) per feature:
106
106
  - 'auto': Determine categories automatically from the training data.
107
107
  - dict: ``categories[column_name]`` holds the categories expected in
@@ -109,6 +109,7 @@ class OneHotEncoder(base.BaseTransformer):
109
109
  and numeric values within a single feature, and should be sorted in
110
110
  case of numeric values.
111
111
  The used categories can be found in the ``categories_`` attribute.
112
+
112
113
  drop: {‘first’, ‘if_binary’} or an array-like of shape (n_features,), default=None
113
114
  Specifies a methodology to use to drop one of the categories per
114
115
  feature. This is useful in situations where perfectly collinear
@@ -128,15 +129,18 @@ class OneHotEncoder(base.BaseTransformer):
128
129
  When `max_categories` or `min_frequency` is configured to group
129
130
  infrequent categories, the dropping behavior is handled after the
130
131
  grouping.
132
+
131
133
  sparse: bool, default=False
132
134
  Will return a column with sparse representation if set True else will return
133
135
  a separate column for each category.
136
+
134
137
  handle_unknown: {'error', 'ignore'}, default='error'
135
138
  Specifies the way unknown categories are handled during :meth:`transform`.
136
139
  - 'error': Raise an error if an unknown category is present during transform.
137
140
  - 'ignore': When an unknown category is encountered during
138
141
  transform, the resulting one-hot encoded columns for this feature
139
142
  will be all zeros.
143
+
140
144
  min_frequency: int or float, default=None
141
145
  Specifies the minimum frequency below which a category will be
142
146
  considered infrequent.
@@ -144,17 +148,29 @@ class OneHotEncoder(base.BaseTransformer):
144
148
  infrequent.
145
149
  - If `float`, categories with a smaller cardinality than
146
150
  `min_frequency * n_samples` will be considered infrequent.
151
+
147
152
  max_categories: int, default=None
148
153
  Specifies an upper limit to the number of output features for each input
149
154
  feature when considering infrequent categories. If there are infrequent
150
155
  categories, `max_categories` includes the category representing the
151
156
  infrequent categories along with the frequent categories. If `None`,
152
157
  there is no limit to the number of output features.
153
- input_cols: str or Iterable [column_name], default=None
158
+
159
+ input_cols: Optional[Union[str, List[str]]], default=None
154
160
  Single or multiple input columns.
155
- output_cols: str or Iterable [column_name], default=None
161
+
162
+ output_cols: Optional[Union[str, List[str]]], default=None
156
163
  Single or multiple output columns.
157
- drop_input_cols: Remove input columns from output if set True. False by default.
164
+
165
+ passthrough_cols: Optional[Union[str, List[str]]]
166
+ A string or a list of strings indicating column names to be excluded from any
167
+ operations (such as train, transform, or inference). These specified column(s)
168
+ will remain untouched throughout the process. This option is helpful in scenarios
169
+ requiring automatic input_cols inference, but need to avoid using specific
170
+ columns, like index columns, during training or inference.
171
+
172
+ drop_input_cols: Optional[Union[str, List[str]]]
173
+ Remove input columns from output if set True. False by default.
158
174
 
159
175
  Attributes:
160
176
  categories_: dict {column_name: ndarray([category])}
@@ -190,6 +206,7 @@ class OneHotEncoder(base.BaseTransformer):
190
206
  max_categories: Optional[int] = None,
191
207
  input_cols: Optional[Union[str, Iterable[str]]] = None,
192
208
  output_cols: Optional[Union[str, Iterable[str]]] = None,
209
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
193
210
  drop_input_cols: Optional[bool] = False,
194
211
  ) -> None:
195
212
  """See class-level docstring."""
@@ -218,6 +235,7 @@ class OneHotEncoder(base.BaseTransformer):
218
235
 
219
236
  self.set_input_cols(input_cols)
220
237
  self.set_output_cols(output_cols)
238
+ self.set_passthrough_cols(passthrough_cols)
221
239
 
222
240
  @property
223
241
  def infrequent_categories_(self) -> List[Optional[type_utils.LiteralNDArrayType]]:
@@ -658,10 +676,6 @@ class OneHotEncoder(base.BaseTransformer):
658
676
  project=base.PROJECT,
659
677
  subproject=base.SUBPROJECT,
660
678
  )
661
- @telemetry.add_stmt_params_to_df(
662
- project=base.PROJECT,
663
- subproject=base.SUBPROJECT,
664
- )
665
679
  def transform(
666
680
  self, dataset: Union[snowpark.DataFrame, pd.DataFrame]
667
681
  ) -> Union[snowpark.DataFrame, pd.DataFrame, sparse.csr_matrix]:
@@ -1319,7 +1333,9 @@ class OneHotEncoder(base.BaseTransformer):
1319
1333
  """
1320
1334
  category_counts_list = [] # list of ndarray
1321
1335
  for idx, input_col in enumerate(self.input_cols):
1322
- counts = np.vectorize(lambda x: category_counts[input_col][x])(self._categories_list[idx])
1336
+ counts = np.vectorize(lambda x, input_col=input_col: category_counts[input_col][x])(
1337
+ self._categories_list[idx]
1338
+ )
1323
1339
  category_counts_list.append(np.array(counts))
1324
1340
  self._infrequent_indices = [
1325
1341
  self._identify_infrequent(category_count, n_samples) for category_count in category_counts_list
@@ -24,7 +24,7 @@ _COLUMN_BATCH_SIZE = 20
24
24
  # transformer with the sklearn version
25
25
  _SKLEARN_INITIAL_KEYWORDS = "categories" # initial keywords in sklearn
26
26
  _SKLEARN_UNUSED_KEYWORDS = "dtype" # sklearn keywords that are unused in snowml
27
- _SNOWML_ONLY_KEYWORDS = ["input_cols", "output_cols"] # snowml only keywords not present in sklearn
27
+ _SNOWML_ONLY_KEYWORDS = ["input_cols", "output_cols", "passthrough_cols"] # snowml only keywords not present in sklearn
28
28
 
29
29
  # Added keywords mapped to the sklearn versions in which they were added. Update mappings in new
30
30
  # sklearn versions to support parameter validation.
@@ -45,26 +45,47 @@ class OrdinalEncoder(base.BaseTransformer):
45
45
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html).
46
46
 
47
47
  Args:
48
- categories: The string 'auto' (the default) causes the categories to be extracted from the input columns.
48
+ categories: Union[str, Dict[str, type_utils.LiteralNDArrayType]], default="auto"
49
+ The string 'auto' (the default) causes the categories to be extracted from the input columns.
49
50
  To specify the categories yourself, pass a dictionary mapping the column name to an ndarray containing the
50
51
  categories.
51
- handle_unknown: Specifies how unknown categories are handled during transformation. Applicable only if
52
+
53
+ handle_unknown: str, default="error"
54
+ Specifies how unknown categories are handled during transformation. Applicable only if
52
55
  categories is not 'auto'.
53
56
  Valid values are:
54
57
  - 'error': Raise an error if an unknown category is present during transform (default).
55
58
  - 'use_encoded_value': When an unknown category is encountered during transform, the specified
56
59
  encoded_missing_value (below) is used.
57
- unknown_value: When the parameter handle_unknown is set to 'use_encoded_value', this parameter is required and
60
+
61
+ unknown_value: Optional[Union[int, float]], default=None
62
+ When the parameter handle_unknown is set to 'use_encoded_value', this parameter is required and
58
63
  will set the encoded value of unknown categories. It has to be distinct from the values used to encode any
59
64
  of the categories in `fit`.
60
- encoded_missing_value: The value to be used to encode unknown categories.
61
- input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be encoded.
62
- output_cols: The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
65
+
66
+ encoded_missing_value: Union[int, float], default=np.nan
67
+ The value to be used to encode unknown categories.
68
+
69
+ input_cols: Optional[Union[str, List[str]]], default=None
70
+ The name(s) of one or more columns in a DataFrame containing a feature to be encoded.
71
+
72
+ output_cols: Optional[Union[str, List[str]]], default=None
73
+ The name(s) of one or more columns in a DataFrame in which results will be stored. The number of
63
74
  columns specified must match the number of input columns.
64
- drop_input_cols: Remove input columns from output if set True. False by default.
75
+
76
+ passthrough_cols: Optional[Union[str, List[str]]], default=None
77
+ A string or a list of strings indicating column names to be excluded from any
78
+ operations (such as train, transform, or inference). These specified column(s)
79
+ will remain untouched throughout the process. This option is helpful in scenarios
80
+ requiring automatic input_cols inference, but need to avoid using specific
81
+ columns, like index columns, during training or inference.
82
+
83
+ drop_input_cols: Optional[bool], default=False
84
+ Remove input columns from output if set True. False by default.
65
85
 
66
86
  Attributes:
67
- categories_ (dict of ndarray): The categories of each feature determined during fitting. Maps input column
87
+ categories_ (dict of ndarray): List[type_utils.LiteralNDArrayType]
88
+ The categories of each feature determined during fitting. Maps input column
68
89
  names to an array of the detected categories.
69
90
  Attributes are valid only after fit() has been called.
70
91
  """
@@ -78,6 +99,7 @@ class OrdinalEncoder(base.BaseTransformer):
78
99
  encoded_missing_value: Union[int, float] = np.nan,
79
100
  input_cols: Optional[Union[str, Iterable[str]]] = None,
80
101
  output_cols: Optional[Union[str, Iterable[str]]] = None,
102
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
81
103
  drop_input_cols: Optional[bool] = False,
82
104
  ) -> None:
83
105
  """
@@ -110,6 +132,11 @@ class OrdinalEncoder(base.BaseTransformer):
110
132
  encoded_missing_value: Encoded value of missing categories.
111
133
  input_cols: Single or multiple input columns.
112
134
  output_cols: Single or multiple output columns.
135
+ passthrough_cols: A string or a list of strings indicating column names to be excluded from any
136
+ operations (such as train, transform, or inference). These specified column(s)
137
+ will remain untouched throughout the process. This option is helful in scenarios
138
+ requiring automatic input_cols inference, but need to avoid using specific
139
+ columns, like index columns, during in training or inference.
113
140
  drop_input_cols: Remove input columns from output if set True. False by default.
114
141
 
115
142
  Attributes:
@@ -129,6 +156,7 @@ class OrdinalEncoder(base.BaseTransformer):
129
156
 
130
157
  self.set_input_cols(input_cols)
131
158
  self.set_output_cols(output_cols)
159
+ self.set_passthrough_cols(passthrough_cols)
132
160
 
133
161
  def _reset(self) -> None:
134
162
  """
@@ -417,10 +445,6 @@ class OrdinalEncoder(base.BaseTransformer):
417
445
  project=base.PROJECT,
418
446
  subproject=base.SUBPROJECT,
419
447
  )
420
- @telemetry.add_stmt_params_to_df(
421
- project=base.PROJECT,
422
- subproject=base.SUBPROJECT,
423
- )
424
448
  def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
425
449
  """
426
450
  Transform dataset to ordinal codes.