snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Birch(BaseTransformer):
|
57
58
|
r"""Implements the BIRCH clustering algorithm
|
58
59
|
For more details on this class, see [sklearn.cluster.Birch]
|
@@ -60,6 +61,49 @@ class Birch(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
threshold: float, default=0.5
|
64
108
|
The radius of the subcluster obtained by merging a new sample and the
|
65
109
|
closest subcluster should be lesser than the threshold. Otherwise a new
|
@@ -93,35 +137,6 @@ class Birch(BaseTransformer):
|
|
93
137
|
copy: bool, default=True
|
94
138
|
Whether or not to make a copy of the given data. If set to False,
|
95
139
|
the initial data will be overwritten.
|
96
|
-
|
97
|
-
input_cols: Optional[Union[str, List[str]]]
|
98
|
-
A string or list of strings representing column names that contain features.
|
99
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
100
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
101
|
-
considered input columns.
|
102
|
-
|
103
|
-
label_cols: Optional[Union[str, List[str]]]
|
104
|
-
A string or list of strings representing column names that contain labels.
|
105
|
-
This is a required param for estimators, as there is no way to infer these
|
106
|
-
columns. If this parameter is not specified, then object is fitted without
|
107
|
-
labels (like a transformer).
|
108
|
-
|
109
|
-
output_cols: Optional[Union[str, List[str]]]
|
110
|
-
A string or list of strings representing column names that will store the
|
111
|
-
output of predict and transform operations. The length of output_cols must
|
112
|
-
match the expected number of output columns from the specific estimator or
|
113
|
-
transformer class used.
|
114
|
-
If this parameter is not specified, output column names are derived by
|
115
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
116
|
-
column names work for estimator's predict() method, but output_cols must
|
117
|
-
be set explicitly for transformers.
|
118
|
-
|
119
|
-
sample_weight_col: Optional[str]
|
120
|
-
A string representing the column name containing the sample weights.
|
121
|
-
This argument is only required when working with weighted datasets.
|
122
|
-
|
123
|
-
drop_input_cols: Optional[bool], default=False
|
124
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
125
140
|
"""
|
126
141
|
|
127
142
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -135,6 +150,7 @@ class Birch(BaseTransformer):
|
|
135
150
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
136
151
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
137
152
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
153
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
138
154
|
drop_input_cols: Optional[bool] = False,
|
139
155
|
sample_weight_col: Optional[str] = None,
|
140
156
|
) -> None:
|
@@ -143,9 +159,10 @@ class Birch(BaseTransformer):
|
|
143
159
|
self.set_input_cols(input_cols)
|
144
160
|
self.set_output_cols(output_cols)
|
145
161
|
self.set_label_cols(label_cols)
|
162
|
+
self.set_passthrough_cols(passthrough_cols)
|
146
163
|
self.set_drop_input_cols(drop_input_cols)
|
147
164
|
self.set_sample_weight_col(sample_weight_col)
|
148
|
-
deps = set(
|
165
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
149
166
|
|
150
167
|
self._deps = list(deps)
|
151
168
|
|
@@ -158,13 +175,14 @@ class Birch(BaseTransformer):
|
|
158
175
|
args=init_args,
|
159
176
|
klass=sklearn.cluster.Birch
|
160
177
|
)
|
161
|
-
self._sklearn_object = sklearn.cluster.Birch(
|
178
|
+
self._sklearn_object: Any = sklearn.cluster.Birch(
|
162
179
|
**cleaned_up_init_args,
|
163
180
|
)
|
164
181
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
165
182
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
166
183
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
167
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Birch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
184
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Birch.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
185
|
+
self._autogenerated = True
|
168
186
|
|
169
187
|
def _get_rand_id(self) -> str:
|
170
188
|
"""
|
@@ -175,24 +193,6 @@ class Birch(BaseTransformer):
|
|
175
193
|
"""
|
176
194
|
return str(uuid4()).replace("-", "_").upper()
|
177
195
|
|
178
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
179
|
-
"""
|
180
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
181
|
-
|
182
|
-
Args:
|
183
|
-
dataset: Input dataset.
|
184
|
-
"""
|
185
|
-
if not self.input_cols:
|
186
|
-
cols = [
|
187
|
-
c for c in dataset.columns
|
188
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
189
|
-
]
|
190
|
-
self.set_input_cols(input_cols=cols)
|
191
|
-
|
192
|
-
if not self.output_cols:
|
193
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
194
|
-
self.set_output_cols(output_cols=cols)
|
195
|
-
|
196
196
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Birch":
|
197
197
|
"""
|
198
198
|
Input columns setter.
|
@@ -238,54 +238,48 @@ class Birch(BaseTransformer):
|
|
238
238
|
self
|
239
239
|
"""
|
240
240
|
self._infer_input_output_cols(dataset)
|
241
|
-
if isinstance(dataset,
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
self.
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
241
|
+
if isinstance(dataset, DataFrame):
|
242
|
+
session = dataset._session
|
243
|
+
assert session is not None # keep mypy happy
|
244
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
245
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
246
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
247
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
248
|
+
|
249
|
+
# Specify input columns so column pruning will be enforced
|
250
|
+
selected_cols = self._get_active_columns()
|
251
|
+
if len(selected_cols) > 0:
|
252
|
+
dataset = dataset.select(selected_cols)
|
253
|
+
|
254
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
255
|
+
|
256
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
257
|
+
if SNOWML_SPROC_ENV in os.environ:
|
258
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
259
|
+
project=_PROJECT,
|
260
|
+
subproject=_SUBPROJECT,
|
261
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Birch.__class__.__name__),
|
262
|
+
api_calls=[Session.call],
|
263
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
264
|
+
)
|
265
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
266
|
+
pd_df.columns = dataset.columns
|
267
|
+
dataset = pd_df
|
268
|
+
|
269
|
+
model_trainer = ModelTrainerBuilder.build(
|
270
|
+
estimator=self._sklearn_object,
|
271
|
+
dataset=dataset,
|
272
|
+
input_cols=self.input_cols,
|
273
|
+
label_cols=self.label_cols,
|
274
|
+
sample_weight_col=self.sample_weight_col,
|
275
|
+
autogenerated=self._autogenerated,
|
276
|
+
subproject=_SUBPROJECT
|
277
|
+
)
|
278
|
+
self._sklearn_object = model_trainer.train()
|
257
279
|
self._is_fitted = True
|
258
280
|
self._get_model_signatures(dataset)
|
259
281
|
return self
|
260
282
|
|
261
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
262
|
-
session = dataset._session
|
263
|
-
assert session is not None # keep mypy happy
|
264
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
265
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
266
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
267
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
268
|
-
|
269
|
-
# Specify input columns so column pruning will be enforced
|
270
|
-
selected_cols = self._get_active_columns()
|
271
|
-
if len(selected_cols) > 0:
|
272
|
-
dataset = dataset.select(selected_cols)
|
273
|
-
|
274
|
-
estimator = self._sklearn_object
|
275
|
-
assert estimator is not None # Keep mypy happy
|
276
|
-
|
277
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
278
|
-
|
279
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
280
|
-
dataset,
|
281
|
-
session,
|
282
|
-
estimator,
|
283
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
284
|
-
self.input_cols,
|
285
|
-
self.label_cols,
|
286
|
-
self.sample_weight_col,
|
287
|
-
)
|
288
|
-
|
289
283
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
290
284
|
if self._drop_input_cols:
|
291
285
|
return []
|
@@ -473,11 +467,6 @@ class Birch(BaseTransformer):
|
|
473
467
|
subproject=_SUBPROJECT,
|
474
468
|
custom_tags=dict([("autogen", True)]),
|
475
469
|
)
|
476
|
-
@telemetry.add_stmt_params_to_df(
|
477
|
-
project=_PROJECT,
|
478
|
-
subproject=_SUBPROJECT,
|
479
|
-
custom_tags=dict([("autogen", True)]),
|
480
|
-
)
|
481
470
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
482
471
|
"""Predict data using the ``centroids_`` of subclusters
|
483
472
|
For more details on this function, see [sklearn.cluster.Birch.predict]
|
@@ -531,11 +520,6 @@ class Birch(BaseTransformer):
|
|
531
520
|
subproject=_SUBPROJECT,
|
532
521
|
custom_tags=dict([("autogen", True)]),
|
533
522
|
)
|
534
|
-
@telemetry.add_stmt_params_to_df(
|
535
|
-
project=_PROJECT,
|
536
|
-
subproject=_SUBPROJECT,
|
537
|
-
custom_tags=dict([("autogen", True)]),
|
538
|
-
)
|
539
523
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
540
524
|
"""Transform X into subcluster centroids dimension
|
541
525
|
For more details on this function, see [sklearn.cluster.Birch.transform]
|
@@ -596,7 +580,8 @@ class Birch(BaseTransformer):
|
|
596
580
|
if True:
|
597
581
|
self.fit(dataset)
|
598
582
|
assert self._sklearn_object is not None
|
599
|
-
|
583
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
584
|
+
return labels
|
600
585
|
else:
|
601
586
|
raise NotImplementedError
|
602
587
|
|
@@ -632,6 +617,7 @@ class Birch(BaseTransformer):
|
|
632
617
|
output_cols = []
|
633
618
|
|
634
619
|
# Make sure column names are valid snowflake identifiers.
|
620
|
+
assert output_cols is not None # Make MyPy happy
|
635
621
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
636
622
|
|
637
623
|
return rv
|
@@ -642,11 +628,6 @@ class Birch(BaseTransformer):
|
|
642
628
|
subproject=_SUBPROJECT,
|
643
629
|
custom_tags=dict([("autogen", True)]),
|
644
630
|
)
|
645
|
-
@telemetry.add_stmt_params_to_df(
|
646
|
-
project=_PROJECT,
|
647
|
-
subproject=_SUBPROJECT,
|
648
|
-
custom_tags=dict([("autogen", True)]),
|
649
|
-
)
|
650
631
|
def predict_proba(
|
651
632
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
652
633
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -687,11 +668,6 @@ class Birch(BaseTransformer):
|
|
687
668
|
subproject=_SUBPROJECT,
|
688
669
|
custom_tags=dict([("autogen", True)]),
|
689
670
|
)
|
690
|
-
@telemetry.add_stmt_params_to_df(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
671
|
def predict_log_proba(
|
696
672
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
697
673
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -728,16 +704,6 @@ class Birch(BaseTransformer):
|
|
728
704
|
return output_df
|
729
705
|
|
730
706
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
731
|
-
@telemetry.send_api_usage_telemetry(
|
732
|
-
project=_PROJECT,
|
733
|
-
subproject=_SUBPROJECT,
|
734
|
-
custom_tags=dict([("autogen", True)]),
|
735
|
-
)
|
736
|
-
@telemetry.add_stmt_params_to_df(
|
737
|
-
project=_PROJECT,
|
738
|
-
subproject=_SUBPROJECT,
|
739
|
-
custom_tags=dict([("autogen", True)]),
|
740
|
-
)
|
741
707
|
def decision_function(
|
742
708
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
743
709
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -836,11 +802,6 @@ class Birch(BaseTransformer):
|
|
836
802
|
subproject=_SUBPROJECT,
|
837
803
|
custom_tags=dict([("autogen", True)]),
|
838
804
|
)
|
839
|
-
@telemetry.add_stmt_params_to_df(
|
840
|
-
project=_PROJECT,
|
841
|
-
subproject=_SUBPROJECT,
|
842
|
-
custom_tags=dict([("autogen", True)]),
|
843
|
-
)
|
844
805
|
def kneighbors(
|
845
806
|
self,
|
846
807
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -900,18 +861,28 @@ class Birch(BaseTransformer):
|
|
900
861
|
# For classifier, the type of predict is the same as the type of label
|
901
862
|
if self._sklearn_object._estimator_type == 'classifier':
|
902
863
|
# label columns is the desired type for output
|
903
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
864
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
904
865
|
# rename the output columns
|
905
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
866
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
867
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
868
|
+
([] if self._drop_input_cols else inputs)
|
869
|
+
+ outputs)
|
870
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
871
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
872
|
+
# Clusterer returns int64 cluster labels.
|
873
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
874
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
906
875
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
907
876
|
([] if self._drop_input_cols else inputs)
|
908
877
|
+ outputs)
|
878
|
+
|
909
879
|
# For regressor, the type of predict is float64
|
910
880
|
elif self._sklearn_object._estimator_type == 'regressor':
|
911
881
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
912
882
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
913
883
|
([] if self._drop_input_cols else inputs)
|
914
884
|
+ outputs)
|
885
|
+
|
915
886
|
for prob_func in PROB_FUNCTIONS:
|
916
887
|
if hasattr(self, prob_func):
|
917
888
|
output_cols_prefix: str = f"{prob_func}_"
|