snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LassoCV(BaseTransformer):
|
57
58
|
r"""Lasso linear model with iterative fitting along a regularization path
|
58
59
|
For more details on this class, see [sklearn.linear_model.LassoCV]
|
@@ -60,6 +61,51 @@ class LassoCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
eps: float, default=1e-3
|
64
110
|
Length of the path. ``eps=1e-3`` means that
|
65
111
|
``alpha_min / alpha_max = 1e-3``.
|
@@ -130,35 +176,6 @@ class LassoCV(BaseTransformer):
|
|
130
176
|
rather than looping over features sequentially by default. This
|
131
177
|
(setting to 'random') often leads to significantly faster convergence
|
132
178
|
especially when tol is higher than 1e-4.
|
133
|
-
|
134
|
-
input_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or list of strings representing column names that contain features.
|
136
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
137
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
138
|
-
considered input columns.
|
139
|
-
|
140
|
-
label_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or list of strings representing column names that contain labels.
|
142
|
-
This is a required param for estimators, as there is no way to infer these
|
143
|
-
columns. If this parameter is not specified, then object is fitted without
|
144
|
-
labels (like a transformer).
|
145
|
-
|
146
|
-
output_cols: Optional[Union[str, List[str]]]
|
147
|
-
A string or list of strings representing column names that will store the
|
148
|
-
output of predict and transform operations. The length of output_cols must
|
149
|
-
match the expected number of output columns from the specific estimator or
|
150
|
-
transformer class used.
|
151
|
-
If this parameter is not specified, output column names are derived by
|
152
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
153
|
-
column names work for estimator's predict() method, but output_cols must
|
154
|
-
be set explicitly for transformers.
|
155
|
-
|
156
|
-
sample_weight_col: Optional[str]
|
157
|
-
A string representing the column name containing the sample weights.
|
158
|
-
This argument is only required when working with weighted datasets.
|
159
|
-
|
160
|
-
drop_input_cols: Optional[bool], default=False
|
161
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
162
179
|
"""
|
163
180
|
|
164
181
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -181,6 +198,7 @@ class LassoCV(BaseTransformer):
|
|
181
198
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
182
199
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
183
200
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
201
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
184
202
|
drop_input_cols: Optional[bool] = False,
|
185
203
|
sample_weight_col: Optional[str] = None,
|
186
204
|
) -> None:
|
@@ -189,9 +207,10 @@ class LassoCV(BaseTransformer):
|
|
189
207
|
self.set_input_cols(input_cols)
|
190
208
|
self.set_output_cols(output_cols)
|
191
209
|
self.set_label_cols(label_cols)
|
210
|
+
self.set_passthrough_cols(passthrough_cols)
|
192
211
|
self.set_drop_input_cols(drop_input_cols)
|
193
212
|
self.set_sample_weight_col(sample_weight_col)
|
194
|
-
deps = set(
|
213
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
195
214
|
|
196
215
|
self._deps = list(deps)
|
197
216
|
|
@@ -213,13 +232,14 @@ class LassoCV(BaseTransformer):
|
|
213
232
|
args=init_args,
|
214
233
|
klass=sklearn.linear_model.LassoCV
|
215
234
|
)
|
216
|
-
self._sklearn_object = sklearn.linear_model.LassoCV(
|
235
|
+
self._sklearn_object: Any = sklearn.linear_model.LassoCV(
|
217
236
|
**cleaned_up_init_args,
|
218
237
|
)
|
219
238
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
220
239
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
221
240
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
222
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
241
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
242
|
+
self._autogenerated = True
|
223
243
|
|
224
244
|
def _get_rand_id(self) -> str:
|
225
245
|
"""
|
@@ -230,24 +250,6 @@ class LassoCV(BaseTransformer):
|
|
230
250
|
"""
|
231
251
|
return str(uuid4()).replace("-", "_").upper()
|
232
252
|
|
233
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
234
|
-
"""
|
235
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
236
|
-
|
237
|
-
Args:
|
238
|
-
dataset: Input dataset.
|
239
|
-
"""
|
240
|
-
if not self.input_cols:
|
241
|
-
cols = [
|
242
|
-
c for c in dataset.columns
|
243
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
244
|
-
]
|
245
|
-
self.set_input_cols(input_cols=cols)
|
246
|
-
|
247
|
-
if not self.output_cols:
|
248
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
249
|
-
self.set_output_cols(output_cols=cols)
|
250
|
-
|
251
253
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LassoCV":
|
252
254
|
"""
|
253
255
|
Input columns setter.
|
@@ -293,54 +295,48 @@ class LassoCV(BaseTransformer):
|
|
293
295
|
self
|
294
296
|
"""
|
295
297
|
self._infer_input_output_cols(dataset)
|
296
|
-
if isinstance(dataset,
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
self.
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
298
|
+
if isinstance(dataset, DataFrame):
|
299
|
+
session = dataset._session
|
300
|
+
assert session is not None # keep mypy happy
|
301
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
302
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
303
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
304
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
305
|
+
|
306
|
+
# Specify input columns so column pruning will be enforced
|
307
|
+
selected_cols = self._get_active_columns()
|
308
|
+
if len(selected_cols) > 0:
|
309
|
+
dataset = dataset.select(selected_cols)
|
310
|
+
|
311
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
312
|
+
|
313
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
314
|
+
if SNOWML_SPROC_ENV in os.environ:
|
315
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
316
|
+
project=_PROJECT,
|
317
|
+
subproject=_SUBPROJECT,
|
318
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoCV.__class__.__name__),
|
319
|
+
api_calls=[Session.call],
|
320
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
321
|
+
)
|
322
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
323
|
+
pd_df.columns = dataset.columns
|
324
|
+
dataset = pd_df
|
325
|
+
|
326
|
+
model_trainer = ModelTrainerBuilder.build(
|
327
|
+
estimator=self._sklearn_object,
|
328
|
+
dataset=dataset,
|
329
|
+
input_cols=self.input_cols,
|
330
|
+
label_cols=self.label_cols,
|
331
|
+
sample_weight_col=self.sample_weight_col,
|
332
|
+
autogenerated=self._autogenerated,
|
333
|
+
subproject=_SUBPROJECT
|
334
|
+
)
|
335
|
+
self._sklearn_object = model_trainer.train()
|
312
336
|
self._is_fitted = True
|
313
337
|
self._get_model_signatures(dataset)
|
314
338
|
return self
|
315
339
|
|
316
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
317
|
-
session = dataset._session
|
318
|
-
assert session is not None # keep mypy happy
|
319
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
320
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
321
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
322
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
323
|
-
|
324
|
-
# Specify input columns so column pruning will be enforced
|
325
|
-
selected_cols = self._get_active_columns()
|
326
|
-
if len(selected_cols) > 0:
|
327
|
-
dataset = dataset.select(selected_cols)
|
328
|
-
|
329
|
-
estimator = self._sklearn_object
|
330
|
-
assert estimator is not None # Keep mypy happy
|
331
|
-
|
332
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
333
|
-
|
334
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
335
|
-
dataset,
|
336
|
-
session,
|
337
|
-
estimator,
|
338
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
339
|
-
self.input_cols,
|
340
|
-
self.label_cols,
|
341
|
-
self.sample_weight_col,
|
342
|
-
)
|
343
|
-
|
344
340
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
345
341
|
if self._drop_input_cols:
|
346
342
|
return []
|
@@ -528,11 +524,6 @@ class LassoCV(BaseTransformer):
|
|
528
524
|
subproject=_SUBPROJECT,
|
529
525
|
custom_tags=dict([("autogen", True)]),
|
530
526
|
)
|
531
|
-
@telemetry.add_stmt_params_to_df(
|
532
|
-
project=_PROJECT,
|
533
|
-
subproject=_SUBPROJECT,
|
534
|
-
custom_tags=dict([("autogen", True)]),
|
535
|
-
)
|
536
527
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
537
528
|
"""Predict using the linear model
|
538
529
|
For more details on this function, see [sklearn.linear_model.LassoCV.predict]
|
@@ -586,11 +577,6 @@ class LassoCV(BaseTransformer):
|
|
586
577
|
subproject=_SUBPROJECT,
|
587
578
|
custom_tags=dict([("autogen", True)]),
|
588
579
|
)
|
589
|
-
@telemetry.add_stmt_params_to_df(
|
590
|
-
project=_PROJECT,
|
591
|
-
subproject=_SUBPROJECT,
|
592
|
-
custom_tags=dict([("autogen", True)]),
|
593
|
-
)
|
594
580
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
595
581
|
"""Method not supported for this class.
|
596
582
|
|
@@ -647,7 +633,8 @@ class LassoCV(BaseTransformer):
|
|
647
633
|
if False:
|
648
634
|
self.fit(dataset)
|
649
635
|
assert self._sklearn_object is not None
|
650
|
-
|
636
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
637
|
+
return labels
|
651
638
|
else:
|
652
639
|
raise NotImplementedError
|
653
640
|
|
@@ -683,6 +670,7 @@ class LassoCV(BaseTransformer):
|
|
683
670
|
output_cols = []
|
684
671
|
|
685
672
|
# Make sure column names are valid snowflake identifiers.
|
673
|
+
assert output_cols is not None # Make MyPy happy
|
686
674
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
687
675
|
|
688
676
|
return rv
|
@@ -693,11 +681,6 @@ class LassoCV(BaseTransformer):
|
|
693
681
|
subproject=_SUBPROJECT,
|
694
682
|
custom_tags=dict([("autogen", True)]),
|
695
683
|
)
|
696
|
-
@telemetry.add_stmt_params_to_df(
|
697
|
-
project=_PROJECT,
|
698
|
-
subproject=_SUBPROJECT,
|
699
|
-
custom_tags=dict([("autogen", True)]),
|
700
|
-
)
|
701
684
|
def predict_proba(
|
702
685
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
703
686
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -738,11 +721,6 @@ class LassoCV(BaseTransformer):
|
|
738
721
|
subproject=_SUBPROJECT,
|
739
722
|
custom_tags=dict([("autogen", True)]),
|
740
723
|
)
|
741
|
-
@telemetry.add_stmt_params_to_df(
|
742
|
-
project=_PROJECT,
|
743
|
-
subproject=_SUBPROJECT,
|
744
|
-
custom_tags=dict([("autogen", True)]),
|
745
|
-
)
|
746
724
|
def predict_log_proba(
|
747
725
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
748
726
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -779,16 +757,6 @@ class LassoCV(BaseTransformer):
|
|
779
757
|
return output_df
|
780
758
|
|
781
759
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
782
|
-
@telemetry.send_api_usage_telemetry(
|
783
|
-
project=_PROJECT,
|
784
|
-
subproject=_SUBPROJECT,
|
785
|
-
custom_tags=dict([("autogen", True)]),
|
786
|
-
)
|
787
|
-
@telemetry.add_stmt_params_to_df(
|
788
|
-
project=_PROJECT,
|
789
|
-
subproject=_SUBPROJECT,
|
790
|
-
custom_tags=dict([("autogen", True)]),
|
791
|
-
)
|
792
760
|
def decision_function(
|
793
761
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
794
762
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -889,11 +857,6 @@ class LassoCV(BaseTransformer):
|
|
889
857
|
subproject=_SUBPROJECT,
|
890
858
|
custom_tags=dict([("autogen", True)]),
|
891
859
|
)
|
892
|
-
@telemetry.add_stmt_params_to_df(
|
893
|
-
project=_PROJECT,
|
894
|
-
subproject=_SUBPROJECT,
|
895
|
-
custom_tags=dict([("autogen", True)]),
|
896
|
-
)
|
897
860
|
def kneighbors(
|
898
861
|
self,
|
899
862
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -953,18 +916,28 @@ class LassoCV(BaseTransformer):
|
|
953
916
|
# For classifier, the type of predict is the same as the type of label
|
954
917
|
if self._sklearn_object._estimator_type == 'classifier':
|
955
918
|
# label columns is the desired type for output
|
956
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
919
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
957
920
|
# rename the output columns
|
958
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
921
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
959
922
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
960
923
|
([] if self._drop_input_cols else inputs)
|
961
924
|
+ outputs)
|
925
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
926
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
927
|
+
# Clusterer returns int64 cluster labels.
|
928
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
929
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
930
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
931
|
+
([] if self._drop_input_cols else inputs)
|
932
|
+
+ outputs)
|
933
|
+
|
962
934
|
# For regressor, the type of predict is float64
|
963
935
|
elif self._sklearn_object._estimator_type == 'regressor':
|
964
936
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
965
937
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
966
938
|
([] if self._drop_input_cols else inputs)
|
967
939
|
+ outputs)
|
940
|
+
|
968
941
|
for prob_func in PROB_FUNCTIONS:
|
969
942
|
if hasattr(self, prob_func):
|
970
943
|
output_cols_prefix: str = f"{prob_func}_"
|