snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LassoCV(BaseTransformer):
57
58
  r"""Lasso linear model with iterative fitting along a regularization path
58
59
  For more details on this class, see [sklearn.linear_model.LassoCV]
@@ -60,6 +61,51 @@ class LassoCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  eps: float, default=1e-3
64
110
  Length of the path. ``eps=1e-3`` means that
65
111
  ``alpha_min / alpha_max = 1e-3``.
@@ -130,35 +176,6 @@ class LassoCV(BaseTransformer):
130
176
  rather than looping over features sequentially by default. This
131
177
  (setting to 'random') often leads to significantly faster convergence
132
178
  especially when tol is higher than 1e-4.
133
-
134
- input_cols: Optional[Union[str, List[str]]]
135
- A string or list of strings representing column names that contain features.
136
- If this parameter is not specified, all columns in the input DataFrame except
137
- the columns specified by label_cols and sample_weight_col parameters are
138
- considered input columns.
139
-
140
- label_cols: Optional[Union[str, List[str]]]
141
- A string or list of strings representing column names that contain labels.
142
- This is a required param for estimators, as there is no way to infer these
143
- columns. If this parameter is not specified, then object is fitted without
144
- labels (like a transformer).
145
-
146
- output_cols: Optional[Union[str, List[str]]]
147
- A string or list of strings representing column names that will store the
148
- output of predict and transform operations. The length of output_cols must
149
- match the expected number of output columns from the specific estimator or
150
- transformer class used.
151
- If this parameter is not specified, output column names are derived by
152
- adding an OUTPUT_ prefix to the label column names. These inferred output
153
- column names work for estimator's predict() method, but output_cols must
154
- be set explicitly for transformers.
155
-
156
- sample_weight_col: Optional[str]
157
- A string representing the column name containing the sample weights.
158
- This argument is only required when working with weighted datasets.
159
-
160
- drop_input_cols: Optional[bool], default=False
161
- If set, the response of predict(), transform() methods will not contain input columns.
162
179
  """
163
180
 
164
181
  def __init__( # type: ignore[no-untyped-def]
@@ -181,6 +198,7 @@ class LassoCV(BaseTransformer):
181
198
  input_cols: Optional[Union[str, Iterable[str]]] = None,
182
199
  output_cols: Optional[Union[str, Iterable[str]]] = None,
183
200
  label_cols: Optional[Union[str, Iterable[str]]] = None,
201
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
184
202
  drop_input_cols: Optional[bool] = False,
185
203
  sample_weight_col: Optional[str] = None,
186
204
  ) -> None:
@@ -189,9 +207,10 @@ class LassoCV(BaseTransformer):
189
207
  self.set_input_cols(input_cols)
190
208
  self.set_output_cols(output_cols)
191
209
  self.set_label_cols(label_cols)
210
+ self.set_passthrough_cols(passthrough_cols)
192
211
  self.set_drop_input_cols(drop_input_cols)
193
212
  self.set_sample_weight_col(sample_weight_col)
194
- deps = set(SklearnWrapperProvider().dependencies)
213
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
195
214
 
196
215
  self._deps = list(deps)
197
216
 
@@ -213,13 +232,14 @@ class LassoCV(BaseTransformer):
213
232
  args=init_args,
214
233
  klass=sklearn.linear_model.LassoCV
215
234
  )
216
- self._sklearn_object = sklearn.linear_model.LassoCV(
235
+ self._sklearn_object: Any = sklearn.linear_model.LassoCV(
217
236
  **cleaned_up_init_args,
218
237
  )
219
238
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
220
239
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
221
240
  self._snowpark_cols: Optional[List[str]] = self.input_cols
222
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
241
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
242
+ self._autogenerated = True
223
243
 
224
244
  def _get_rand_id(self) -> str:
225
245
  """
@@ -230,24 +250,6 @@ class LassoCV(BaseTransformer):
230
250
  """
231
251
  return str(uuid4()).replace("-", "_").upper()
232
252
 
233
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
234
- """
235
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
236
-
237
- Args:
238
- dataset: Input dataset.
239
- """
240
- if not self.input_cols:
241
- cols = [
242
- c for c in dataset.columns
243
- if c not in self.get_label_cols() and c != self.sample_weight_col
244
- ]
245
- self.set_input_cols(input_cols=cols)
246
-
247
- if not self.output_cols:
248
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
249
- self.set_output_cols(output_cols=cols)
250
-
251
253
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LassoCV":
252
254
  """
253
255
  Input columns setter.
@@ -293,54 +295,48 @@ class LassoCV(BaseTransformer):
293
295
  self
294
296
  """
295
297
  self._infer_input_output_cols(dataset)
296
- if isinstance(dataset, pd.DataFrame):
297
- assert self._sklearn_object is not None # keep mypy happy
298
- self._sklearn_object = self._handlers.fit_pandas(
299
- dataset,
300
- self._sklearn_object,
301
- self.input_cols,
302
- self.label_cols,
303
- self.sample_weight_col
304
- )
305
- elif isinstance(dataset, DataFrame):
306
- self._fit_snowpark(dataset)
307
- else:
308
- raise TypeError(
309
- f"Unexpected dataset type: {type(dataset)}."
310
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
311
- )
298
+ if isinstance(dataset, DataFrame):
299
+ session = dataset._session
300
+ assert session is not None # keep mypy happy
301
+ # Validate that key package version in user workspace are supported in snowflake conda channel
302
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
303
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
304
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
305
+
306
+ # Specify input columns so column pruning will be enforced
307
+ selected_cols = self._get_active_columns()
308
+ if len(selected_cols) > 0:
309
+ dataset = dataset.select(selected_cols)
310
+
311
+ self._snowpark_cols = dataset.select(self.input_cols).columns
312
+
313
+ # If we are already in a stored procedure, no need to kick off another one.
314
+ if SNOWML_SPROC_ENV in os.environ:
315
+ statement_params = telemetry.get_function_usage_statement_params(
316
+ project=_PROJECT,
317
+ subproject=_SUBPROJECT,
318
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoCV.__class__.__name__),
319
+ api_calls=[Session.call],
320
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
321
+ )
322
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
323
+ pd_df.columns = dataset.columns
324
+ dataset = pd_df
325
+
326
+ model_trainer = ModelTrainerBuilder.build(
327
+ estimator=self._sklearn_object,
328
+ dataset=dataset,
329
+ input_cols=self.input_cols,
330
+ label_cols=self.label_cols,
331
+ sample_weight_col=self.sample_weight_col,
332
+ autogenerated=self._autogenerated,
333
+ subproject=_SUBPROJECT
334
+ )
335
+ self._sklearn_object = model_trainer.train()
312
336
  self._is_fitted = True
313
337
  self._get_model_signatures(dataset)
314
338
  return self
315
339
 
316
- def _fit_snowpark(self, dataset: DataFrame) -> None:
317
- session = dataset._session
318
- assert session is not None # keep mypy happy
319
- # Validate that key package version in user workspace are supported in snowflake conda channel
320
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
321
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
322
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
323
-
324
- # Specify input columns so column pruning will be enforced
325
- selected_cols = self._get_active_columns()
326
- if len(selected_cols) > 0:
327
- dataset = dataset.select(selected_cols)
328
-
329
- estimator = self._sklearn_object
330
- assert estimator is not None # Keep mypy happy
331
-
332
- self._snowpark_cols = dataset.select(self.input_cols).columns
333
-
334
- self._sklearn_object = self._handlers.fit_snowpark(
335
- dataset,
336
- session,
337
- estimator,
338
- ["snowflake-snowpark-python"] + self._get_dependencies(),
339
- self.input_cols,
340
- self.label_cols,
341
- self.sample_weight_col,
342
- )
343
-
344
340
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
345
341
  if self._drop_input_cols:
346
342
  return []
@@ -528,11 +524,6 @@ class LassoCV(BaseTransformer):
528
524
  subproject=_SUBPROJECT,
529
525
  custom_tags=dict([("autogen", True)]),
530
526
  )
531
- @telemetry.add_stmt_params_to_df(
532
- project=_PROJECT,
533
- subproject=_SUBPROJECT,
534
- custom_tags=dict([("autogen", True)]),
535
- )
536
527
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
537
528
  """Predict using the linear model
538
529
  For more details on this function, see [sklearn.linear_model.LassoCV.predict]
@@ -586,11 +577,6 @@ class LassoCV(BaseTransformer):
586
577
  subproject=_SUBPROJECT,
587
578
  custom_tags=dict([("autogen", True)]),
588
579
  )
589
- @telemetry.add_stmt_params_to_df(
590
- project=_PROJECT,
591
- subproject=_SUBPROJECT,
592
- custom_tags=dict([("autogen", True)]),
593
- )
594
580
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
595
581
  """Method not supported for this class.
596
582
 
@@ -647,7 +633,8 @@ class LassoCV(BaseTransformer):
647
633
  if False:
648
634
  self.fit(dataset)
649
635
  assert self._sklearn_object is not None
650
- return self._sklearn_object.labels_
636
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
637
+ return labels
651
638
  else:
652
639
  raise NotImplementedError
653
640
 
@@ -683,6 +670,7 @@ class LassoCV(BaseTransformer):
683
670
  output_cols = []
684
671
 
685
672
  # Make sure column names are valid snowflake identifiers.
673
+ assert output_cols is not None # Make MyPy happy
686
674
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
687
675
 
688
676
  return rv
@@ -693,11 +681,6 @@ class LassoCV(BaseTransformer):
693
681
  subproject=_SUBPROJECT,
694
682
  custom_tags=dict([("autogen", True)]),
695
683
  )
696
- @telemetry.add_stmt_params_to_df(
697
- project=_PROJECT,
698
- subproject=_SUBPROJECT,
699
- custom_tags=dict([("autogen", True)]),
700
- )
701
684
  def predict_proba(
702
685
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
703
686
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -738,11 +721,6 @@ class LassoCV(BaseTransformer):
738
721
  subproject=_SUBPROJECT,
739
722
  custom_tags=dict([("autogen", True)]),
740
723
  )
741
- @telemetry.add_stmt_params_to_df(
742
- project=_PROJECT,
743
- subproject=_SUBPROJECT,
744
- custom_tags=dict([("autogen", True)]),
745
- )
746
724
  def predict_log_proba(
747
725
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
748
726
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -779,16 +757,6 @@ class LassoCV(BaseTransformer):
779
757
  return output_df
780
758
 
781
759
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
782
- @telemetry.send_api_usage_telemetry(
783
- project=_PROJECT,
784
- subproject=_SUBPROJECT,
785
- custom_tags=dict([("autogen", True)]),
786
- )
787
- @telemetry.add_stmt_params_to_df(
788
- project=_PROJECT,
789
- subproject=_SUBPROJECT,
790
- custom_tags=dict([("autogen", True)]),
791
- )
792
760
  def decision_function(
793
761
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
794
762
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -889,11 +857,6 @@ class LassoCV(BaseTransformer):
889
857
  subproject=_SUBPROJECT,
890
858
  custom_tags=dict([("autogen", True)]),
891
859
  )
892
- @telemetry.add_stmt_params_to_df(
893
- project=_PROJECT,
894
- subproject=_SUBPROJECT,
895
- custom_tags=dict([("autogen", True)]),
896
- )
897
860
  def kneighbors(
898
861
  self,
899
862
  dataset: Union[DataFrame, pd.DataFrame],
@@ -953,18 +916,28 @@ class LassoCV(BaseTransformer):
953
916
  # For classifier, the type of predict is the same as the type of label
954
917
  if self._sklearn_object._estimator_type == 'classifier':
955
918
  # label columns is the desired type for output
956
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
919
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
957
920
  # rename the output columns
958
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
921
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
959
922
  self._model_signature_dict["predict"] = ModelSignature(inputs,
960
923
  ([] if self._drop_input_cols else inputs)
961
924
  + outputs)
925
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
926
+ # For outlier models, returns -1 for outliers and 1 for inliers.
927
+ # Clusterer returns int64 cluster labels.
928
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
929
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
930
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
931
+ ([] if self._drop_input_cols else inputs)
932
+ + outputs)
933
+
962
934
  # For regressor, the type of predict is float64
963
935
  elif self._sklearn_object._estimator_type == 'regressor':
964
936
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
965
937
  self._model_signature_dict["predict"] = ModelSignature(inputs,
966
938
  ([] if self._drop_input_cols else inputs)
967
939
  + outputs)
940
+
968
941
  for prob_func in PROB_FUNCTIONS:
969
942
  if hasattr(self, prob_func):
970
943
  output_cols_prefix: str = f"{prob_func}_"