snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MultiTaskElasticNetCV(BaseTransformer):
57
58
  r"""Multi-task L1/L2 ElasticNet with built-in cross-validation
58
59
  For more details on this class, see [sklearn.linear_model.MultiTaskElasticNetCV]
@@ -60,6 +61,51 @@ class MultiTaskElasticNetCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  l1_ratio: float or list of float, default=0.5
64
110
  The ElasticNet mixing parameter, with 0 < l1_ratio <= 1.
65
111
  For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it
@@ -135,35 +181,6 @@ class MultiTaskElasticNetCV(BaseTransformer):
135
181
  rather than looping over features sequentially by default. This
136
182
  (setting to 'random') often leads to significantly faster convergence
137
183
  especially when tol is higher than 1e-4.
138
-
139
- input_cols: Optional[Union[str, List[str]]]
140
- A string or list of strings representing column names that contain features.
141
- If this parameter is not specified, all columns in the input DataFrame except
142
- the columns specified by label_cols and sample_weight_col parameters are
143
- considered input columns.
144
-
145
- label_cols: Optional[Union[str, List[str]]]
146
- A string or list of strings representing column names that contain labels.
147
- This is a required param for estimators, as there is no way to infer these
148
- columns. If this parameter is not specified, then object is fitted without
149
- labels (like a transformer).
150
-
151
- output_cols: Optional[Union[str, List[str]]]
152
- A string or list of strings representing column names that will store the
153
- output of predict and transform operations. The length of output_cols must
154
- match the expected number of output columns from the specific estimator or
155
- transformer class used.
156
- If this parameter is not specified, output column names are derived by
157
- adding an OUTPUT_ prefix to the label column names. These inferred output
158
- column names work for estimator's predict() method, but output_cols must
159
- be set explicitly for transformers.
160
-
161
- sample_weight_col: Optional[str]
162
- A string representing the column name containing the sample weights.
163
- This argument is only required when working with weighted datasets.
164
-
165
- drop_input_cols: Optional[bool], default=False
166
- If set, the response of predict(), transform() methods will not contain input columns.
167
184
  """
168
185
 
169
186
  def __init__( # type: ignore[no-untyped-def]
@@ -185,6 +202,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
185
202
  input_cols: Optional[Union[str, Iterable[str]]] = None,
186
203
  output_cols: Optional[Union[str, Iterable[str]]] = None,
187
204
  label_cols: Optional[Union[str, Iterable[str]]] = None,
205
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
188
206
  drop_input_cols: Optional[bool] = False,
189
207
  sample_weight_col: Optional[str] = None,
190
208
  ) -> None:
@@ -193,9 +211,10 @@ class MultiTaskElasticNetCV(BaseTransformer):
193
211
  self.set_input_cols(input_cols)
194
212
  self.set_output_cols(output_cols)
195
213
  self.set_label_cols(label_cols)
214
+ self.set_passthrough_cols(passthrough_cols)
196
215
  self.set_drop_input_cols(drop_input_cols)
197
216
  self.set_sample_weight_col(sample_weight_col)
198
- deps = set(SklearnWrapperProvider().dependencies)
217
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
199
218
 
200
219
  self._deps = list(deps)
201
220
 
@@ -216,13 +235,14 @@ class MultiTaskElasticNetCV(BaseTransformer):
216
235
  args=init_args,
217
236
  klass=sklearn.linear_model.MultiTaskElasticNetCV
218
237
  )
219
- self._sklearn_object = sklearn.linear_model.MultiTaskElasticNetCV(
238
+ self._sklearn_object: Any = sklearn.linear_model.MultiTaskElasticNetCV(
220
239
  **cleaned_up_init_args,
221
240
  )
222
241
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
223
242
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
224
243
  self._snowpark_cols: Optional[List[str]] = self.input_cols
225
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskElasticNetCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
244
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskElasticNetCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
245
+ self._autogenerated = True
226
246
 
227
247
  def _get_rand_id(self) -> str:
228
248
  """
@@ -233,24 +253,6 @@ class MultiTaskElasticNetCV(BaseTransformer):
233
253
  """
234
254
  return str(uuid4()).replace("-", "_").upper()
235
255
 
236
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
237
- """
238
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
239
-
240
- Args:
241
- dataset: Input dataset.
242
- """
243
- if not self.input_cols:
244
- cols = [
245
- c for c in dataset.columns
246
- if c not in self.get_label_cols() and c != self.sample_weight_col
247
- ]
248
- self.set_input_cols(input_cols=cols)
249
-
250
- if not self.output_cols:
251
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
252
- self.set_output_cols(output_cols=cols)
253
-
254
256
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MultiTaskElasticNetCV":
255
257
  """
256
258
  Input columns setter.
@@ -296,54 +298,48 @@ class MultiTaskElasticNetCV(BaseTransformer):
296
298
  self
297
299
  """
298
300
  self._infer_input_output_cols(dataset)
299
- if isinstance(dataset, pd.DataFrame):
300
- assert self._sklearn_object is not None # keep mypy happy
301
- self._sklearn_object = self._handlers.fit_pandas(
302
- dataset,
303
- self._sklearn_object,
304
- self.input_cols,
305
- self.label_cols,
306
- self.sample_weight_col
307
- )
308
- elif isinstance(dataset, DataFrame):
309
- self._fit_snowpark(dataset)
310
- else:
311
- raise TypeError(
312
- f"Unexpected dataset type: {type(dataset)}."
313
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
314
- )
301
+ if isinstance(dataset, DataFrame):
302
+ session = dataset._session
303
+ assert session is not None # keep mypy happy
304
+ # Validate that key package version in user workspace are supported in snowflake conda channel
305
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
306
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
307
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
308
+
309
+ # Specify input columns so column pruning will be enforced
310
+ selected_cols = self._get_active_columns()
311
+ if len(selected_cols) > 0:
312
+ dataset = dataset.select(selected_cols)
313
+
314
+ self._snowpark_cols = dataset.select(self.input_cols).columns
315
+
316
+ # If we are already in a stored procedure, no need to kick off another one.
317
+ if SNOWML_SPROC_ENV in os.environ:
318
+ statement_params = telemetry.get_function_usage_statement_params(
319
+ project=_PROJECT,
320
+ subproject=_SUBPROJECT,
321
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskElasticNetCV.__class__.__name__),
322
+ api_calls=[Session.call],
323
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
324
+ )
325
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
326
+ pd_df.columns = dataset.columns
327
+ dataset = pd_df
328
+
329
+ model_trainer = ModelTrainerBuilder.build(
330
+ estimator=self._sklearn_object,
331
+ dataset=dataset,
332
+ input_cols=self.input_cols,
333
+ label_cols=self.label_cols,
334
+ sample_weight_col=self.sample_weight_col,
335
+ autogenerated=self._autogenerated,
336
+ subproject=_SUBPROJECT
337
+ )
338
+ self._sklearn_object = model_trainer.train()
315
339
  self._is_fitted = True
316
340
  self._get_model_signatures(dataset)
317
341
  return self
318
342
 
319
- def _fit_snowpark(self, dataset: DataFrame) -> None:
320
- session = dataset._session
321
- assert session is not None # keep mypy happy
322
- # Validate that key package version in user workspace are supported in snowflake conda channel
323
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
324
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
325
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
326
-
327
- # Specify input columns so column pruning will be enforced
328
- selected_cols = self._get_active_columns()
329
- if len(selected_cols) > 0:
330
- dataset = dataset.select(selected_cols)
331
-
332
- estimator = self._sklearn_object
333
- assert estimator is not None # Keep mypy happy
334
-
335
- self._snowpark_cols = dataset.select(self.input_cols).columns
336
-
337
- self._sklearn_object = self._handlers.fit_snowpark(
338
- dataset,
339
- session,
340
- estimator,
341
- ["snowflake-snowpark-python"] + self._get_dependencies(),
342
- self.input_cols,
343
- self.label_cols,
344
- self.sample_weight_col,
345
- )
346
-
347
343
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
348
344
  if self._drop_input_cols:
349
345
  return []
@@ -531,11 +527,6 @@ class MultiTaskElasticNetCV(BaseTransformer):
531
527
  subproject=_SUBPROJECT,
532
528
  custom_tags=dict([("autogen", True)]),
533
529
  )
534
- @telemetry.add_stmt_params_to_df(
535
- project=_PROJECT,
536
- subproject=_SUBPROJECT,
537
- custom_tags=dict([("autogen", True)]),
538
- )
539
530
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
540
531
  """Predict using the linear model
541
532
  For more details on this function, see [sklearn.linear_model.MultiTaskElasticNetCV.predict]
@@ -589,11 +580,6 @@ class MultiTaskElasticNetCV(BaseTransformer):
589
580
  subproject=_SUBPROJECT,
590
581
  custom_tags=dict([("autogen", True)]),
591
582
  )
592
- @telemetry.add_stmt_params_to_df(
593
- project=_PROJECT,
594
- subproject=_SUBPROJECT,
595
- custom_tags=dict([("autogen", True)]),
596
- )
597
583
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
598
584
  """Method not supported for this class.
599
585
 
@@ -650,7 +636,8 @@ class MultiTaskElasticNetCV(BaseTransformer):
650
636
  if False:
651
637
  self.fit(dataset)
652
638
  assert self._sklearn_object is not None
653
- return self._sklearn_object.labels_
639
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
640
+ return labels
654
641
  else:
655
642
  raise NotImplementedError
656
643
 
@@ -686,6 +673,7 @@ class MultiTaskElasticNetCV(BaseTransformer):
686
673
  output_cols = []
687
674
 
688
675
  # Make sure column names are valid snowflake identifiers.
676
+ assert output_cols is not None # Make MyPy happy
689
677
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
690
678
 
691
679
  return rv
@@ -696,11 +684,6 @@ class MultiTaskElasticNetCV(BaseTransformer):
696
684
  subproject=_SUBPROJECT,
697
685
  custom_tags=dict([("autogen", True)]),
698
686
  )
699
- @telemetry.add_stmt_params_to_df(
700
- project=_PROJECT,
701
- subproject=_SUBPROJECT,
702
- custom_tags=dict([("autogen", True)]),
703
- )
704
687
  def predict_proba(
705
688
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
706
689
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -741,11 +724,6 @@ class MultiTaskElasticNetCV(BaseTransformer):
741
724
  subproject=_SUBPROJECT,
742
725
  custom_tags=dict([("autogen", True)]),
743
726
  )
744
- @telemetry.add_stmt_params_to_df(
745
- project=_PROJECT,
746
- subproject=_SUBPROJECT,
747
- custom_tags=dict([("autogen", True)]),
748
- )
749
727
  def predict_log_proba(
750
728
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
751
729
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -782,16 +760,6 @@ class MultiTaskElasticNetCV(BaseTransformer):
782
760
  return output_df
783
761
 
784
762
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
785
- @telemetry.send_api_usage_telemetry(
786
- project=_PROJECT,
787
- subproject=_SUBPROJECT,
788
- custom_tags=dict([("autogen", True)]),
789
- )
790
- @telemetry.add_stmt_params_to_df(
791
- project=_PROJECT,
792
- subproject=_SUBPROJECT,
793
- custom_tags=dict([("autogen", True)]),
794
- )
795
763
  def decision_function(
796
764
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
797
765
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -892,11 +860,6 @@ class MultiTaskElasticNetCV(BaseTransformer):
892
860
  subproject=_SUBPROJECT,
893
861
  custom_tags=dict([("autogen", True)]),
894
862
  )
895
- @telemetry.add_stmt_params_to_df(
896
- project=_PROJECT,
897
- subproject=_SUBPROJECT,
898
- custom_tags=dict([("autogen", True)]),
899
- )
900
863
  def kneighbors(
901
864
  self,
902
865
  dataset: Union[DataFrame, pd.DataFrame],
@@ -956,18 +919,28 @@ class MultiTaskElasticNetCV(BaseTransformer):
956
919
  # For classifier, the type of predict is the same as the type of label
957
920
  if self._sklearn_object._estimator_type == 'classifier':
958
921
  # label columns is the desired type for output
959
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
922
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
960
923
  # rename the output columns
961
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
924
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
962
925
  self._model_signature_dict["predict"] = ModelSignature(inputs,
963
926
  ([] if self._drop_input_cols else inputs)
964
927
  + outputs)
928
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
929
+ # For outlier models, returns -1 for outliers and 1 for inliers.
930
+ # Clusterer returns int64 cluster labels.
931
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
932
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
933
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
934
+ ([] if self._drop_input_cols else inputs)
935
+ + outputs)
936
+
965
937
  # For regressor, the type of predict is float64
966
938
  elif self._sklearn_object._estimator_type == 'regressor':
967
939
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
968
940
  self._model_signature_dict["predict"] = ModelSignature(inputs,
969
941
  ([] if self._drop_input_cols else inputs)
970
942
  + outputs)
943
+
971
944
  for prob_func in PROB_FUNCTIONS:
972
945
  if hasattr(self, prob_func):
973
946
  output_cols_prefix: str = f"{prob_func}_"