snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ExtraTreeRegressor(BaseTransformer):
|
57
58
|
r"""An extremely randomized tree regressor
|
58
59
|
For more details on this class, see [sklearn.tree.ExtraTreeRegressor]
|
@@ -60,6 +61,51 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
criterion: {"squared_error", "friedman_mse", "absolute_error", "poisson"}, default="squared_error"
|
64
110
|
The function to measure the quality of a split. Supported criteria
|
65
111
|
are "squared_error" for the mean squared error, which is equal to
|
@@ -150,35 +196,6 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
150
196
|
subtree with the largest cost complexity that is smaller than
|
151
197
|
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
|
152
198
|
:ref:`minimal_cost_complexity_pruning` for details.
|
153
|
-
|
154
|
-
input_cols: Optional[Union[str, List[str]]]
|
155
|
-
A string or list of strings representing column names that contain features.
|
156
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
157
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
158
|
-
considered input columns.
|
159
|
-
|
160
|
-
label_cols: Optional[Union[str, List[str]]]
|
161
|
-
A string or list of strings representing column names that contain labels.
|
162
|
-
This is a required param for estimators, as there is no way to infer these
|
163
|
-
columns. If this parameter is not specified, then object is fitted without
|
164
|
-
labels (like a transformer).
|
165
|
-
|
166
|
-
output_cols: Optional[Union[str, List[str]]]
|
167
|
-
A string or list of strings representing column names that will store the
|
168
|
-
output of predict and transform operations. The length of output_cols must
|
169
|
-
match the expected number of output columns from the specific estimator or
|
170
|
-
transformer class used.
|
171
|
-
If this parameter is not specified, output column names are derived by
|
172
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
173
|
-
column names work for estimator's predict() method, but output_cols must
|
174
|
-
be set explicitly for transformers.
|
175
|
-
|
176
|
-
sample_weight_col: Optional[str]
|
177
|
-
A string representing the column name containing the sample weights.
|
178
|
-
This argument is only required when working with weighted datasets.
|
179
|
-
|
180
|
-
drop_input_cols: Optional[bool], default=False
|
181
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
182
199
|
"""
|
183
200
|
|
184
201
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -198,6 +215,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
198
215
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
199
216
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
200
217
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
218
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
201
219
|
drop_input_cols: Optional[bool] = False,
|
202
220
|
sample_weight_col: Optional[str] = None,
|
203
221
|
) -> None:
|
@@ -206,9 +224,10 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
206
224
|
self.set_input_cols(input_cols)
|
207
225
|
self.set_output_cols(output_cols)
|
208
226
|
self.set_label_cols(label_cols)
|
227
|
+
self.set_passthrough_cols(passthrough_cols)
|
209
228
|
self.set_drop_input_cols(drop_input_cols)
|
210
229
|
self.set_sample_weight_col(sample_weight_col)
|
211
|
-
deps = set(
|
230
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
212
231
|
|
213
232
|
self._deps = list(deps)
|
214
233
|
|
@@ -227,13 +246,14 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
227
246
|
args=init_args,
|
228
247
|
klass=sklearn.tree.ExtraTreeRegressor
|
229
248
|
)
|
230
|
-
self._sklearn_object = sklearn.tree.ExtraTreeRegressor(
|
249
|
+
self._sklearn_object: Any = sklearn.tree.ExtraTreeRegressor(
|
231
250
|
**cleaned_up_init_args,
|
232
251
|
)
|
233
252
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
234
253
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
235
254
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
236
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
255
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
256
|
+
self._autogenerated = True
|
237
257
|
|
238
258
|
def _get_rand_id(self) -> str:
|
239
259
|
"""
|
@@ -244,24 +264,6 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
244
264
|
"""
|
245
265
|
return str(uuid4()).replace("-", "_").upper()
|
246
266
|
|
247
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
248
|
-
"""
|
249
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
250
|
-
|
251
|
-
Args:
|
252
|
-
dataset: Input dataset.
|
253
|
-
"""
|
254
|
-
if not self.input_cols:
|
255
|
-
cols = [
|
256
|
-
c for c in dataset.columns
|
257
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
258
|
-
]
|
259
|
-
self.set_input_cols(input_cols=cols)
|
260
|
-
|
261
|
-
if not self.output_cols:
|
262
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
263
|
-
self.set_output_cols(output_cols=cols)
|
264
|
-
|
265
267
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ExtraTreeRegressor":
|
266
268
|
"""
|
267
269
|
Input columns setter.
|
@@ -307,54 +309,48 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
307
309
|
self
|
308
310
|
"""
|
309
311
|
self._infer_input_output_cols(dataset)
|
310
|
-
if isinstance(dataset,
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
self.
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
312
|
+
if isinstance(dataset, DataFrame):
|
313
|
+
session = dataset._session
|
314
|
+
assert session is not None # keep mypy happy
|
315
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
316
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
317
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
318
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
319
|
+
|
320
|
+
# Specify input columns so column pruning will be enforced
|
321
|
+
selected_cols = self._get_active_columns()
|
322
|
+
if len(selected_cols) > 0:
|
323
|
+
dataset = dataset.select(selected_cols)
|
324
|
+
|
325
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
326
|
+
|
327
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
328
|
+
if SNOWML_SPROC_ENV in os.environ:
|
329
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
330
|
+
project=_PROJECT,
|
331
|
+
subproject=_SUBPROJECT,
|
332
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreeRegressor.__class__.__name__),
|
333
|
+
api_calls=[Session.call],
|
334
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
335
|
+
)
|
336
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
337
|
+
pd_df.columns = dataset.columns
|
338
|
+
dataset = pd_df
|
339
|
+
|
340
|
+
model_trainer = ModelTrainerBuilder.build(
|
341
|
+
estimator=self._sklearn_object,
|
342
|
+
dataset=dataset,
|
343
|
+
input_cols=self.input_cols,
|
344
|
+
label_cols=self.label_cols,
|
345
|
+
sample_weight_col=self.sample_weight_col,
|
346
|
+
autogenerated=self._autogenerated,
|
347
|
+
subproject=_SUBPROJECT
|
348
|
+
)
|
349
|
+
self._sklearn_object = model_trainer.train()
|
326
350
|
self._is_fitted = True
|
327
351
|
self._get_model_signatures(dataset)
|
328
352
|
return self
|
329
353
|
|
330
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
331
|
-
session = dataset._session
|
332
|
-
assert session is not None # keep mypy happy
|
333
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
334
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
335
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
336
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
337
|
-
|
338
|
-
# Specify input columns so column pruning will be enforced
|
339
|
-
selected_cols = self._get_active_columns()
|
340
|
-
if len(selected_cols) > 0:
|
341
|
-
dataset = dataset.select(selected_cols)
|
342
|
-
|
343
|
-
estimator = self._sklearn_object
|
344
|
-
assert estimator is not None # Keep mypy happy
|
345
|
-
|
346
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
347
|
-
|
348
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
349
|
-
dataset,
|
350
|
-
session,
|
351
|
-
estimator,
|
352
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
353
|
-
self.input_cols,
|
354
|
-
self.label_cols,
|
355
|
-
self.sample_weight_col,
|
356
|
-
)
|
357
|
-
|
358
354
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
359
355
|
if self._drop_input_cols:
|
360
356
|
return []
|
@@ -542,11 +538,6 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
542
538
|
subproject=_SUBPROJECT,
|
543
539
|
custom_tags=dict([("autogen", True)]),
|
544
540
|
)
|
545
|
-
@telemetry.add_stmt_params_to_df(
|
546
|
-
project=_PROJECT,
|
547
|
-
subproject=_SUBPROJECT,
|
548
|
-
custom_tags=dict([("autogen", True)]),
|
549
|
-
)
|
550
541
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
551
542
|
"""Predict class or regression value for X
|
552
543
|
For more details on this function, see [sklearn.tree.ExtraTreeRegressor.predict]
|
@@ -600,11 +591,6 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
600
591
|
subproject=_SUBPROJECT,
|
601
592
|
custom_tags=dict([("autogen", True)]),
|
602
593
|
)
|
603
|
-
@telemetry.add_stmt_params_to_df(
|
604
|
-
project=_PROJECT,
|
605
|
-
subproject=_SUBPROJECT,
|
606
|
-
custom_tags=dict([("autogen", True)]),
|
607
|
-
)
|
608
594
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
609
595
|
"""Method not supported for this class.
|
610
596
|
|
@@ -661,7 +647,8 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
661
647
|
if False:
|
662
648
|
self.fit(dataset)
|
663
649
|
assert self._sklearn_object is not None
|
664
|
-
|
650
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
651
|
+
return labels
|
665
652
|
else:
|
666
653
|
raise NotImplementedError
|
667
654
|
|
@@ -697,6 +684,7 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
697
684
|
output_cols = []
|
698
685
|
|
699
686
|
# Make sure column names are valid snowflake identifiers.
|
687
|
+
assert output_cols is not None # Make MyPy happy
|
700
688
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
701
689
|
|
702
690
|
return rv
|
@@ -707,11 +695,6 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
707
695
|
subproject=_SUBPROJECT,
|
708
696
|
custom_tags=dict([("autogen", True)]),
|
709
697
|
)
|
710
|
-
@telemetry.add_stmt_params_to_df(
|
711
|
-
project=_PROJECT,
|
712
|
-
subproject=_SUBPROJECT,
|
713
|
-
custom_tags=dict([("autogen", True)]),
|
714
|
-
)
|
715
698
|
def predict_proba(
|
716
699
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
717
700
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -752,11 +735,6 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
752
735
|
subproject=_SUBPROJECT,
|
753
736
|
custom_tags=dict([("autogen", True)]),
|
754
737
|
)
|
755
|
-
@telemetry.add_stmt_params_to_df(
|
756
|
-
project=_PROJECT,
|
757
|
-
subproject=_SUBPROJECT,
|
758
|
-
custom_tags=dict([("autogen", True)]),
|
759
|
-
)
|
760
738
|
def predict_log_proba(
|
761
739
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
762
740
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -793,16 +771,6 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
793
771
|
return output_df
|
794
772
|
|
795
773
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
796
|
-
@telemetry.send_api_usage_telemetry(
|
797
|
-
project=_PROJECT,
|
798
|
-
subproject=_SUBPROJECT,
|
799
|
-
custom_tags=dict([("autogen", True)]),
|
800
|
-
)
|
801
|
-
@telemetry.add_stmt_params_to_df(
|
802
|
-
project=_PROJECT,
|
803
|
-
subproject=_SUBPROJECT,
|
804
|
-
custom_tags=dict([("autogen", True)]),
|
805
|
-
)
|
806
774
|
def decision_function(
|
807
775
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
808
776
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -903,11 +871,6 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
903
871
|
subproject=_SUBPROJECT,
|
904
872
|
custom_tags=dict([("autogen", True)]),
|
905
873
|
)
|
906
|
-
@telemetry.add_stmt_params_to_df(
|
907
|
-
project=_PROJECT,
|
908
|
-
subproject=_SUBPROJECT,
|
909
|
-
custom_tags=dict([("autogen", True)]),
|
910
|
-
)
|
911
874
|
def kneighbors(
|
912
875
|
self,
|
913
876
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -967,18 +930,28 @@ class ExtraTreeRegressor(BaseTransformer):
|
|
967
930
|
# For classifier, the type of predict is the same as the type of label
|
968
931
|
if self._sklearn_object._estimator_type == 'classifier':
|
969
932
|
# label columns is the desired type for output
|
970
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
933
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
971
934
|
# rename the output columns
|
972
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
935
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
973
936
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
974
937
|
([] if self._drop_input_cols else inputs)
|
975
938
|
+ outputs)
|
939
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
940
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
941
|
+
# Clusterer returns int64 cluster labels.
|
942
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
943
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
944
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
945
|
+
([] if self._drop_input_cols else inputs)
|
946
|
+
+ outputs)
|
947
|
+
|
976
948
|
# For regressor, the type of predict is float64
|
977
949
|
elif self._sklearn_object._estimator_type == 'regressor':
|
978
950
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
979
951
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
980
952
|
([] if self._drop_input_cols else inputs)
|
981
953
|
+ outputs)
|
954
|
+
|
982
955
|
for prob_func in PROB_FUNCTIONS:
|
983
956
|
if hasattr(self, prob_func):
|
984
957
|
output_cols_prefix: str = f"{prob_func}_"
|