snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RandomForestClassifier(BaseTransformer):
57
58
  r"""A random forest classifier
58
59
  For more details on this class, see [sklearn.ensemble.RandomForestClassifier]
@@ -60,6 +61,51 @@ class RandomForestClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  n_estimators: int, default=100
64
110
  The number of trees in the forest.
65
111
 
@@ -207,35 +253,6 @@ class RandomForestClassifier(BaseTransformer):
207
253
  - If int, then draw `max_samples` samples.
208
254
  - If float, then draw `max(round(n_samples * max_samples), 1)` samples. Thus,
209
255
  `max_samples` should be in the interval `(0.0, 1.0]`.
210
-
211
- input_cols: Optional[Union[str, List[str]]]
212
- A string or list of strings representing column names that contain features.
213
- If this parameter is not specified, all columns in the input DataFrame except
214
- the columns specified by label_cols and sample_weight_col parameters are
215
- considered input columns.
216
-
217
- label_cols: Optional[Union[str, List[str]]]
218
- A string or list of strings representing column names that contain labels.
219
- This is a required param for estimators, as there is no way to infer these
220
- columns. If this parameter is not specified, then object is fitted without
221
- labels (like a transformer).
222
-
223
- output_cols: Optional[Union[str, List[str]]]
224
- A string or list of strings representing column names that will store the
225
- output of predict and transform operations. The length of output_cols must
226
- match the expected number of output columns from the specific estimator or
227
- transformer class used.
228
- If this parameter is not specified, output column names are derived by
229
- adding an OUTPUT_ prefix to the label column names. These inferred output
230
- column names work for estimator's predict() method, but output_cols must
231
- be set explicitly for transformers.
232
-
233
- sample_weight_col: Optional[str]
234
- A string representing the column name containing the sample weights.
235
- This argument is only required when working with weighted datasets.
236
-
237
- drop_input_cols: Optional[bool], default=False
238
- If set, the response of predict(), transform() methods will not contain input columns.
239
256
  """
240
257
 
241
258
  def __init__( # type: ignore[no-untyped-def]
@@ -262,6 +279,7 @@ class RandomForestClassifier(BaseTransformer):
262
279
  input_cols: Optional[Union[str, Iterable[str]]] = None,
263
280
  output_cols: Optional[Union[str, Iterable[str]]] = None,
264
281
  label_cols: Optional[Union[str, Iterable[str]]] = None,
282
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
265
283
  drop_input_cols: Optional[bool] = False,
266
284
  sample_weight_col: Optional[str] = None,
267
285
  ) -> None:
@@ -270,9 +288,10 @@ class RandomForestClassifier(BaseTransformer):
270
288
  self.set_input_cols(input_cols)
271
289
  self.set_output_cols(output_cols)
272
290
  self.set_label_cols(label_cols)
291
+ self.set_passthrough_cols(passthrough_cols)
273
292
  self.set_drop_input_cols(drop_input_cols)
274
293
  self.set_sample_weight_col(sample_weight_col)
275
- deps = set(SklearnWrapperProvider().dependencies)
294
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
276
295
 
277
296
  self._deps = list(deps)
278
297
 
@@ -298,13 +317,14 @@ class RandomForestClassifier(BaseTransformer):
298
317
  args=init_args,
299
318
  klass=sklearn.ensemble.RandomForestClassifier
300
319
  )
301
- self._sklearn_object = sklearn.ensemble.RandomForestClassifier(
320
+ self._sklearn_object: Any = sklearn.ensemble.RandomForestClassifier(
302
321
  **cleaned_up_init_args,
303
322
  )
304
323
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
305
324
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
306
325
  self._snowpark_cols: Optional[List[str]] = self.input_cols
307
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
326
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
327
+ self._autogenerated = True
308
328
 
309
329
  def _get_rand_id(self) -> str:
310
330
  """
@@ -315,24 +335,6 @@ class RandomForestClassifier(BaseTransformer):
315
335
  """
316
336
  return str(uuid4()).replace("-", "_").upper()
317
337
 
318
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
319
- """
320
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
321
-
322
- Args:
323
- dataset: Input dataset.
324
- """
325
- if not self.input_cols:
326
- cols = [
327
- c for c in dataset.columns
328
- if c not in self.get_label_cols() and c != self.sample_weight_col
329
- ]
330
- self.set_input_cols(input_cols=cols)
331
-
332
- if not self.output_cols:
333
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
334
- self.set_output_cols(output_cols=cols)
335
-
336
338
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RandomForestClassifier":
337
339
  """
338
340
  Input columns setter.
@@ -378,54 +380,48 @@ class RandomForestClassifier(BaseTransformer):
378
380
  self
379
381
  """
380
382
  self._infer_input_output_cols(dataset)
381
- if isinstance(dataset, pd.DataFrame):
382
- assert self._sklearn_object is not None # keep mypy happy
383
- self._sklearn_object = self._handlers.fit_pandas(
384
- dataset,
385
- self._sklearn_object,
386
- self.input_cols,
387
- self.label_cols,
388
- self.sample_weight_col
389
- )
390
- elif isinstance(dataset, DataFrame):
391
- self._fit_snowpark(dataset)
392
- else:
393
- raise TypeError(
394
- f"Unexpected dataset type: {type(dataset)}."
395
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
396
- )
383
+ if isinstance(dataset, DataFrame):
384
+ session = dataset._session
385
+ assert session is not None # keep mypy happy
386
+ # Validate that key package version in user workspace are supported in snowflake conda channel
387
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
388
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
389
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
390
+
391
+ # Specify input columns so column pruning will be enforced
392
+ selected_cols = self._get_active_columns()
393
+ if len(selected_cols) > 0:
394
+ dataset = dataset.select(selected_cols)
395
+
396
+ self._snowpark_cols = dataset.select(self.input_cols).columns
397
+
398
+ # If we are already in a stored procedure, no need to kick off another one.
399
+ if SNOWML_SPROC_ENV in os.environ:
400
+ statement_params = telemetry.get_function_usage_statement_params(
401
+ project=_PROJECT,
402
+ subproject=_SUBPROJECT,
403
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RandomForestClassifier.__class__.__name__),
404
+ api_calls=[Session.call],
405
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
406
+ )
407
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
408
+ pd_df.columns = dataset.columns
409
+ dataset = pd_df
410
+
411
+ model_trainer = ModelTrainerBuilder.build(
412
+ estimator=self._sklearn_object,
413
+ dataset=dataset,
414
+ input_cols=self.input_cols,
415
+ label_cols=self.label_cols,
416
+ sample_weight_col=self.sample_weight_col,
417
+ autogenerated=self._autogenerated,
418
+ subproject=_SUBPROJECT
419
+ )
420
+ self._sklearn_object = model_trainer.train()
397
421
  self._is_fitted = True
398
422
  self._get_model_signatures(dataset)
399
423
  return self
400
424
 
401
- def _fit_snowpark(self, dataset: DataFrame) -> None:
402
- session = dataset._session
403
- assert session is not None # keep mypy happy
404
- # Validate that key package version in user workspace are supported in snowflake conda channel
405
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
406
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
407
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
408
-
409
- # Specify input columns so column pruning will be enforced
410
- selected_cols = self._get_active_columns()
411
- if len(selected_cols) > 0:
412
- dataset = dataset.select(selected_cols)
413
-
414
- estimator = self._sklearn_object
415
- assert estimator is not None # Keep mypy happy
416
-
417
- self._snowpark_cols = dataset.select(self.input_cols).columns
418
-
419
- self._sklearn_object = self._handlers.fit_snowpark(
420
- dataset,
421
- session,
422
- estimator,
423
- ["snowflake-snowpark-python"] + self._get_dependencies(),
424
- self.input_cols,
425
- self.label_cols,
426
- self.sample_weight_col,
427
- )
428
-
429
425
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
430
426
  if self._drop_input_cols:
431
427
  return []
@@ -613,11 +609,6 @@ class RandomForestClassifier(BaseTransformer):
613
609
  subproject=_SUBPROJECT,
614
610
  custom_tags=dict([("autogen", True)]),
615
611
  )
616
- @telemetry.add_stmt_params_to_df(
617
- project=_PROJECT,
618
- subproject=_SUBPROJECT,
619
- custom_tags=dict([("autogen", True)]),
620
- )
621
612
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
622
613
  """Predict class for X
623
614
  For more details on this function, see [sklearn.ensemble.RandomForestClassifier.predict]
@@ -671,11 +662,6 @@ class RandomForestClassifier(BaseTransformer):
671
662
  subproject=_SUBPROJECT,
672
663
  custom_tags=dict([("autogen", True)]),
673
664
  )
674
- @telemetry.add_stmt_params_to_df(
675
- project=_PROJECT,
676
- subproject=_SUBPROJECT,
677
- custom_tags=dict([("autogen", True)]),
678
- )
679
665
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
680
666
  """Method not supported for this class.
681
667
 
@@ -732,7 +718,8 @@ class RandomForestClassifier(BaseTransformer):
732
718
  if False:
733
719
  self.fit(dataset)
734
720
  assert self._sklearn_object is not None
735
- return self._sklearn_object.labels_
721
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
722
+ return labels
736
723
  else:
737
724
  raise NotImplementedError
738
725
 
@@ -768,6 +755,7 @@ class RandomForestClassifier(BaseTransformer):
768
755
  output_cols = []
769
756
 
770
757
  # Make sure column names are valid snowflake identifiers.
758
+ assert output_cols is not None # Make MyPy happy
771
759
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
772
760
 
773
761
  return rv
@@ -778,11 +766,6 @@ class RandomForestClassifier(BaseTransformer):
778
766
  subproject=_SUBPROJECT,
779
767
  custom_tags=dict([("autogen", True)]),
780
768
  )
781
- @telemetry.add_stmt_params_to_df(
782
- project=_PROJECT,
783
- subproject=_SUBPROJECT,
784
- custom_tags=dict([("autogen", True)]),
785
- )
786
769
  def predict_proba(
787
770
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
788
771
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -825,11 +808,6 @@ class RandomForestClassifier(BaseTransformer):
825
808
  subproject=_SUBPROJECT,
826
809
  custom_tags=dict([("autogen", True)]),
827
810
  )
828
- @telemetry.add_stmt_params_to_df(
829
- project=_PROJECT,
830
- subproject=_SUBPROJECT,
831
- custom_tags=dict([("autogen", True)]),
832
- )
833
811
  def predict_log_proba(
834
812
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
835
813
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -868,16 +846,6 @@ class RandomForestClassifier(BaseTransformer):
868
846
  return output_df
869
847
 
870
848
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
871
- @telemetry.send_api_usage_telemetry(
872
- project=_PROJECT,
873
- subproject=_SUBPROJECT,
874
- custom_tags=dict([("autogen", True)]),
875
- )
876
- @telemetry.add_stmt_params_to_df(
877
- project=_PROJECT,
878
- subproject=_SUBPROJECT,
879
- custom_tags=dict([("autogen", True)]),
880
- )
881
849
  def decision_function(
882
850
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
883
851
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -978,11 +946,6 @@ class RandomForestClassifier(BaseTransformer):
978
946
  subproject=_SUBPROJECT,
979
947
  custom_tags=dict([("autogen", True)]),
980
948
  )
981
- @telemetry.add_stmt_params_to_df(
982
- project=_PROJECT,
983
- subproject=_SUBPROJECT,
984
- custom_tags=dict([("autogen", True)]),
985
- )
986
949
  def kneighbors(
987
950
  self,
988
951
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1042,18 +1005,28 @@ class RandomForestClassifier(BaseTransformer):
1042
1005
  # For classifier, the type of predict is the same as the type of label
1043
1006
  if self._sklearn_object._estimator_type == 'classifier':
1044
1007
  # label columns is the desired type for output
1045
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1008
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1046
1009
  # rename the output columns
1047
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1010
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1048
1011
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1049
1012
  ([] if self._drop_input_cols else inputs)
1050
1013
  + outputs)
1014
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1015
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1016
+ # Clusterer returns int64 cluster labels.
1017
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1018
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1019
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1020
+ ([] if self._drop_input_cols else inputs)
1021
+ + outputs)
1022
+
1051
1023
  # For regressor, the type of predict is float64
1052
1024
  elif self._sklearn_object._estimator_type == 'regressor':
1053
1025
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1054
1026
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1055
1027
  ([] if self._drop_input_cols else inputs)
1056
1028
  + outputs)
1029
+
1057
1030
  for prob_func in PROB_FUNCTIONS:
1058
1031
  if hasattr(self, prob_func):
1059
1032
  output_cols_prefix: str = f"{prob_func}_"