snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class PassiveAggressiveRegressor(BaseTransformer):
57
58
  r"""Passive Aggressive Regressor
58
59
  For more details on this class, see [sklearn.linear_model.PassiveAggressiveRegressor]
@@ -61,6 +62,50 @@ class PassiveAggressiveRegressor(BaseTransformer):
61
62
  Parameters
62
63
  ----------
63
64
 
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
64
109
  C: float, default=1.0
65
110
  Maximum step size (regularization). Defaults to 1.0.
66
111
 
@@ -128,35 +173,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
128
173
  result in the ``coef_`` attribute. If set to an int greater than 1,
129
174
  averaging will begin once the total number of samples seen reaches
130
175
  average. So average=10 will begin averaging after seeing 10 samples.
131
-
132
- input_cols: Optional[Union[str, List[str]]]
133
- A string or list of strings representing column names that contain features.
134
- If this parameter is not specified, all columns in the input DataFrame except
135
- the columns specified by label_cols and sample_weight_col parameters are
136
- considered input columns.
137
-
138
- label_cols: Optional[Union[str, List[str]]]
139
- A string or list of strings representing column names that contain labels.
140
- This is a required param for estimators, as there is no way to infer these
141
- columns. If this parameter is not specified, then object is fitted without
142
- labels (like a transformer).
143
-
144
- output_cols: Optional[Union[str, List[str]]]
145
- A string or list of strings representing column names that will store the
146
- output of predict and transform operations. The length of output_cols must
147
- match the expected number of output columns from the specific estimator or
148
- transformer class used.
149
- If this parameter is not specified, output column names are derived by
150
- adding an OUTPUT_ prefix to the label column names. These inferred output
151
- column names work for estimator's predict() method, but output_cols must
152
- be set explicitly for transformers.
153
-
154
- sample_weight_col: Optional[str]
155
- A string representing the column name containing the sample weights.
156
- This argument is only required when working with weighted datasets.
157
-
158
- drop_input_cols: Optional[bool], default=False
159
- If set, the response of predict(), transform() methods will not contain input columns.
160
176
  """
161
177
 
162
178
  def __init__( # type: ignore[no-untyped-def]
@@ -179,6 +195,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
179
195
  input_cols: Optional[Union[str, Iterable[str]]] = None,
180
196
  output_cols: Optional[Union[str, Iterable[str]]] = None,
181
197
  label_cols: Optional[Union[str, Iterable[str]]] = None,
198
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
182
199
  drop_input_cols: Optional[bool] = False,
183
200
  sample_weight_col: Optional[str] = None,
184
201
  ) -> None:
@@ -187,9 +204,10 @@ class PassiveAggressiveRegressor(BaseTransformer):
187
204
  self.set_input_cols(input_cols)
188
205
  self.set_output_cols(output_cols)
189
206
  self.set_label_cols(label_cols)
207
+ self.set_passthrough_cols(passthrough_cols)
190
208
  self.set_drop_input_cols(drop_input_cols)
191
209
  self.set_sample_weight_col(sample_weight_col)
192
- deps = set(SklearnWrapperProvider().dependencies)
210
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
193
211
 
194
212
  self._deps = list(deps)
195
213
 
@@ -211,13 +229,14 @@ class PassiveAggressiveRegressor(BaseTransformer):
211
229
  args=init_args,
212
230
  klass=sklearn.linear_model.PassiveAggressiveRegressor
213
231
  )
214
- self._sklearn_object = sklearn.linear_model.PassiveAggressiveRegressor(
232
+ self._sklearn_object: Any = sklearn.linear_model.PassiveAggressiveRegressor(
215
233
  **cleaned_up_init_args,
216
234
  )
217
235
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
218
236
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
219
237
  self._snowpark_cols: Optional[List[str]] = self.input_cols
220
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
238
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
239
+ self._autogenerated = True
221
240
 
222
241
  def _get_rand_id(self) -> str:
223
242
  """
@@ -228,24 +247,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
228
247
  """
229
248
  return str(uuid4()).replace("-", "_").upper()
230
249
 
231
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
232
- """
233
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
234
-
235
- Args:
236
- dataset: Input dataset.
237
- """
238
- if not self.input_cols:
239
- cols = [
240
- c for c in dataset.columns
241
- if c not in self.get_label_cols() and c != self.sample_weight_col
242
- ]
243
- self.set_input_cols(input_cols=cols)
244
-
245
- if not self.output_cols:
246
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
247
- self.set_output_cols(output_cols=cols)
248
-
249
250
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "PassiveAggressiveRegressor":
250
251
  """
251
252
  Input columns setter.
@@ -291,54 +292,48 @@ class PassiveAggressiveRegressor(BaseTransformer):
291
292
  self
292
293
  """
293
294
  self._infer_input_output_cols(dataset)
294
- if isinstance(dataset, pd.DataFrame):
295
- assert self._sklearn_object is not None # keep mypy happy
296
- self._sklearn_object = self._handlers.fit_pandas(
297
- dataset,
298
- self._sklearn_object,
299
- self.input_cols,
300
- self.label_cols,
301
- self.sample_weight_col
302
- )
303
- elif isinstance(dataset, DataFrame):
304
- self._fit_snowpark(dataset)
305
- else:
306
- raise TypeError(
307
- f"Unexpected dataset type: {type(dataset)}."
308
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
309
- )
295
+ if isinstance(dataset, DataFrame):
296
+ session = dataset._session
297
+ assert session is not None # keep mypy happy
298
+ # Validate that key package version in user workspace are supported in snowflake conda channel
299
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
300
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
301
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
302
+
303
+ # Specify input columns so column pruning will be enforced
304
+ selected_cols = self._get_active_columns()
305
+ if len(selected_cols) > 0:
306
+ dataset = dataset.select(selected_cols)
307
+
308
+ self._snowpark_cols = dataset.select(self.input_cols).columns
309
+
310
+ # If we are already in a stored procedure, no need to kick off another one.
311
+ if SNOWML_SPROC_ENV in os.environ:
312
+ statement_params = telemetry.get_function_usage_statement_params(
313
+ project=_PROJECT,
314
+ subproject=_SUBPROJECT,
315
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PassiveAggressiveRegressor.__class__.__name__),
316
+ api_calls=[Session.call],
317
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
318
+ )
319
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
320
+ pd_df.columns = dataset.columns
321
+ dataset = pd_df
322
+
323
+ model_trainer = ModelTrainerBuilder.build(
324
+ estimator=self._sklearn_object,
325
+ dataset=dataset,
326
+ input_cols=self.input_cols,
327
+ label_cols=self.label_cols,
328
+ sample_weight_col=self.sample_weight_col,
329
+ autogenerated=self._autogenerated,
330
+ subproject=_SUBPROJECT
331
+ )
332
+ self._sklearn_object = model_trainer.train()
310
333
  self._is_fitted = True
311
334
  self._get_model_signatures(dataset)
312
335
  return self
313
336
 
314
- def _fit_snowpark(self, dataset: DataFrame) -> None:
315
- session = dataset._session
316
- assert session is not None # keep mypy happy
317
- # Validate that key package version in user workspace are supported in snowflake conda channel
318
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
319
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
320
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
321
-
322
- # Specify input columns so column pruning will be enforced
323
- selected_cols = self._get_active_columns()
324
- if len(selected_cols) > 0:
325
- dataset = dataset.select(selected_cols)
326
-
327
- estimator = self._sklearn_object
328
- assert estimator is not None # Keep mypy happy
329
-
330
- self._snowpark_cols = dataset.select(self.input_cols).columns
331
-
332
- self._sklearn_object = self._handlers.fit_snowpark(
333
- dataset,
334
- session,
335
- estimator,
336
- ["snowflake-snowpark-python"] + self._get_dependencies(),
337
- self.input_cols,
338
- self.label_cols,
339
- self.sample_weight_col,
340
- )
341
-
342
337
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
343
338
  if self._drop_input_cols:
344
339
  return []
@@ -526,11 +521,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
526
521
  subproject=_SUBPROJECT,
527
522
  custom_tags=dict([("autogen", True)]),
528
523
  )
529
- @telemetry.add_stmt_params_to_df(
530
- project=_PROJECT,
531
- subproject=_SUBPROJECT,
532
- custom_tags=dict([("autogen", True)]),
533
- )
534
524
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
535
525
  """Predict using the linear model
536
526
  For more details on this function, see [sklearn.linear_model.PassiveAggressiveRegressor.predict]
@@ -584,11 +574,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
584
574
  subproject=_SUBPROJECT,
585
575
  custom_tags=dict([("autogen", True)]),
586
576
  )
587
- @telemetry.add_stmt_params_to_df(
588
- project=_PROJECT,
589
- subproject=_SUBPROJECT,
590
- custom_tags=dict([("autogen", True)]),
591
- )
592
577
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
593
578
  """Method not supported for this class.
594
579
 
@@ -645,7 +630,8 @@ class PassiveAggressiveRegressor(BaseTransformer):
645
630
  if False:
646
631
  self.fit(dataset)
647
632
  assert self._sklearn_object is not None
648
- return self._sklearn_object.labels_
633
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
634
+ return labels
649
635
  else:
650
636
  raise NotImplementedError
651
637
 
@@ -681,6 +667,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
681
667
  output_cols = []
682
668
 
683
669
  # Make sure column names are valid snowflake identifiers.
670
+ assert output_cols is not None # Make MyPy happy
684
671
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
685
672
 
686
673
  return rv
@@ -691,11 +678,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
691
678
  subproject=_SUBPROJECT,
692
679
  custom_tags=dict([("autogen", True)]),
693
680
  )
694
- @telemetry.add_stmt_params_to_df(
695
- project=_PROJECT,
696
- subproject=_SUBPROJECT,
697
- custom_tags=dict([("autogen", True)]),
698
- )
699
681
  def predict_proba(
700
682
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
701
683
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -736,11 +718,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
736
718
  subproject=_SUBPROJECT,
737
719
  custom_tags=dict([("autogen", True)]),
738
720
  )
739
- @telemetry.add_stmt_params_to_df(
740
- project=_PROJECT,
741
- subproject=_SUBPROJECT,
742
- custom_tags=dict([("autogen", True)]),
743
- )
744
721
  def predict_log_proba(
745
722
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
746
723
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -777,16 +754,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
777
754
  return output_df
778
755
 
779
756
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
780
- @telemetry.send_api_usage_telemetry(
781
- project=_PROJECT,
782
- subproject=_SUBPROJECT,
783
- custom_tags=dict([("autogen", True)]),
784
- )
785
- @telemetry.add_stmt_params_to_df(
786
- project=_PROJECT,
787
- subproject=_SUBPROJECT,
788
- custom_tags=dict([("autogen", True)]),
789
- )
790
757
  def decision_function(
791
758
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
792
759
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -887,11 +854,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
887
854
  subproject=_SUBPROJECT,
888
855
  custom_tags=dict([("autogen", True)]),
889
856
  )
890
- @telemetry.add_stmt_params_to_df(
891
- project=_PROJECT,
892
- subproject=_SUBPROJECT,
893
- custom_tags=dict([("autogen", True)]),
894
- )
895
857
  def kneighbors(
896
858
  self,
897
859
  dataset: Union[DataFrame, pd.DataFrame],
@@ -951,18 +913,28 @@ class PassiveAggressiveRegressor(BaseTransformer):
951
913
  # For classifier, the type of predict is the same as the type of label
952
914
  if self._sklearn_object._estimator_type == 'classifier':
953
915
  # label columns is the desired type for output
954
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
916
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
955
917
  # rename the output columns
956
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
918
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
919
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
920
+ ([] if self._drop_input_cols else inputs)
921
+ + outputs)
922
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
923
+ # For outlier models, returns -1 for outliers and 1 for inliers.
924
+ # Clusterer returns int64 cluster labels.
925
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
926
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
957
927
  self._model_signature_dict["predict"] = ModelSignature(inputs,
958
928
  ([] if self._drop_input_cols else inputs)
959
929
  + outputs)
930
+
960
931
  # For regressor, the type of predict is float64
961
932
  elif self._sklearn_object._estimator_type == 'regressor':
962
933
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
963
934
  self._model_signature_dict["predict"] = ModelSignature(inputs,
964
935
  ([] if self._drop_input_cols else inputs)
965
936
  + outputs)
937
+
966
938
  for prob_func in PROB_FUNCTIONS:
967
939
  if hasattr(self, prob_func):
968
940
  output_cols_prefix: str = f"{prob_func}_"