snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PassiveAggressiveRegressor(BaseTransformer):
|
57
58
|
r"""Passive Aggressive Regressor
|
58
59
|
For more details on this class, see [sklearn.linear_model.PassiveAggressiveRegressor]
|
@@ -61,6 +62,50 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
64
|
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
64
109
|
C: float, default=1.0
|
65
110
|
Maximum step size (regularization). Defaults to 1.0.
|
66
111
|
|
@@ -128,35 +173,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
128
173
|
result in the ``coef_`` attribute. If set to an int greater than 1,
|
129
174
|
averaging will begin once the total number of samples seen reaches
|
130
175
|
average. So average=10 will begin averaging after seeing 10 samples.
|
131
|
-
|
132
|
-
input_cols: Optional[Union[str, List[str]]]
|
133
|
-
A string or list of strings representing column names that contain features.
|
134
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
135
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
136
|
-
considered input columns.
|
137
|
-
|
138
|
-
label_cols: Optional[Union[str, List[str]]]
|
139
|
-
A string or list of strings representing column names that contain labels.
|
140
|
-
This is a required param for estimators, as there is no way to infer these
|
141
|
-
columns. If this parameter is not specified, then object is fitted without
|
142
|
-
labels (like a transformer).
|
143
|
-
|
144
|
-
output_cols: Optional[Union[str, List[str]]]
|
145
|
-
A string or list of strings representing column names that will store the
|
146
|
-
output of predict and transform operations. The length of output_cols must
|
147
|
-
match the expected number of output columns from the specific estimator or
|
148
|
-
transformer class used.
|
149
|
-
If this parameter is not specified, output column names are derived by
|
150
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
151
|
-
column names work for estimator's predict() method, but output_cols must
|
152
|
-
be set explicitly for transformers.
|
153
|
-
|
154
|
-
sample_weight_col: Optional[str]
|
155
|
-
A string representing the column name containing the sample weights.
|
156
|
-
This argument is only required when working with weighted datasets.
|
157
|
-
|
158
|
-
drop_input_cols: Optional[bool], default=False
|
159
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
160
176
|
"""
|
161
177
|
|
162
178
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -179,6 +195,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
179
195
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
180
196
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
181
197
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
198
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
182
199
|
drop_input_cols: Optional[bool] = False,
|
183
200
|
sample_weight_col: Optional[str] = None,
|
184
201
|
) -> None:
|
@@ -187,9 +204,10 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
187
204
|
self.set_input_cols(input_cols)
|
188
205
|
self.set_output_cols(output_cols)
|
189
206
|
self.set_label_cols(label_cols)
|
207
|
+
self.set_passthrough_cols(passthrough_cols)
|
190
208
|
self.set_drop_input_cols(drop_input_cols)
|
191
209
|
self.set_sample_weight_col(sample_weight_col)
|
192
|
-
deps = set(
|
210
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
193
211
|
|
194
212
|
self._deps = list(deps)
|
195
213
|
|
@@ -211,13 +229,14 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
211
229
|
args=init_args,
|
212
230
|
klass=sklearn.linear_model.PassiveAggressiveRegressor
|
213
231
|
)
|
214
|
-
self._sklearn_object = sklearn.linear_model.PassiveAggressiveRegressor(
|
232
|
+
self._sklearn_object: Any = sklearn.linear_model.PassiveAggressiveRegressor(
|
215
233
|
**cleaned_up_init_args,
|
216
234
|
)
|
217
235
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
218
236
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
219
237
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
220
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
238
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PassiveAggressiveRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
239
|
+
self._autogenerated = True
|
221
240
|
|
222
241
|
def _get_rand_id(self) -> str:
|
223
242
|
"""
|
@@ -228,24 +247,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
228
247
|
"""
|
229
248
|
return str(uuid4()).replace("-", "_").upper()
|
230
249
|
|
231
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
232
|
-
"""
|
233
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
234
|
-
|
235
|
-
Args:
|
236
|
-
dataset: Input dataset.
|
237
|
-
"""
|
238
|
-
if not self.input_cols:
|
239
|
-
cols = [
|
240
|
-
c for c in dataset.columns
|
241
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
242
|
-
]
|
243
|
-
self.set_input_cols(input_cols=cols)
|
244
|
-
|
245
|
-
if not self.output_cols:
|
246
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
247
|
-
self.set_output_cols(output_cols=cols)
|
248
|
-
|
249
250
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "PassiveAggressiveRegressor":
|
250
251
|
"""
|
251
252
|
Input columns setter.
|
@@ -291,54 +292,48 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
291
292
|
self
|
292
293
|
"""
|
293
294
|
self._infer_input_output_cols(dataset)
|
294
|
-
if isinstance(dataset,
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
self.
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
295
|
+
if isinstance(dataset, DataFrame):
|
296
|
+
session = dataset._session
|
297
|
+
assert session is not None # keep mypy happy
|
298
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
299
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
300
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
301
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
302
|
+
|
303
|
+
# Specify input columns so column pruning will be enforced
|
304
|
+
selected_cols = self._get_active_columns()
|
305
|
+
if len(selected_cols) > 0:
|
306
|
+
dataset = dataset.select(selected_cols)
|
307
|
+
|
308
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
309
|
+
|
310
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
311
|
+
if SNOWML_SPROC_ENV in os.environ:
|
312
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
313
|
+
project=_PROJECT,
|
314
|
+
subproject=_SUBPROJECT,
|
315
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PassiveAggressiveRegressor.__class__.__name__),
|
316
|
+
api_calls=[Session.call],
|
317
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
318
|
+
)
|
319
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
320
|
+
pd_df.columns = dataset.columns
|
321
|
+
dataset = pd_df
|
322
|
+
|
323
|
+
model_trainer = ModelTrainerBuilder.build(
|
324
|
+
estimator=self._sklearn_object,
|
325
|
+
dataset=dataset,
|
326
|
+
input_cols=self.input_cols,
|
327
|
+
label_cols=self.label_cols,
|
328
|
+
sample_weight_col=self.sample_weight_col,
|
329
|
+
autogenerated=self._autogenerated,
|
330
|
+
subproject=_SUBPROJECT
|
331
|
+
)
|
332
|
+
self._sklearn_object = model_trainer.train()
|
310
333
|
self._is_fitted = True
|
311
334
|
self._get_model_signatures(dataset)
|
312
335
|
return self
|
313
336
|
|
314
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
315
|
-
session = dataset._session
|
316
|
-
assert session is not None # keep mypy happy
|
317
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
318
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
319
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
320
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
321
|
-
|
322
|
-
# Specify input columns so column pruning will be enforced
|
323
|
-
selected_cols = self._get_active_columns()
|
324
|
-
if len(selected_cols) > 0:
|
325
|
-
dataset = dataset.select(selected_cols)
|
326
|
-
|
327
|
-
estimator = self._sklearn_object
|
328
|
-
assert estimator is not None # Keep mypy happy
|
329
|
-
|
330
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
331
|
-
|
332
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
333
|
-
dataset,
|
334
|
-
session,
|
335
|
-
estimator,
|
336
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
337
|
-
self.input_cols,
|
338
|
-
self.label_cols,
|
339
|
-
self.sample_weight_col,
|
340
|
-
)
|
341
|
-
|
342
337
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
343
338
|
if self._drop_input_cols:
|
344
339
|
return []
|
@@ -526,11 +521,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
526
521
|
subproject=_SUBPROJECT,
|
527
522
|
custom_tags=dict([("autogen", True)]),
|
528
523
|
)
|
529
|
-
@telemetry.add_stmt_params_to_df(
|
530
|
-
project=_PROJECT,
|
531
|
-
subproject=_SUBPROJECT,
|
532
|
-
custom_tags=dict([("autogen", True)]),
|
533
|
-
)
|
534
524
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
535
525
|
"""Predict using the linear model
|
536
526
|
For more details on this function, see [sklearn.linear_model.PassiveAggressiveRegressor.predict]
|
@@ -584,11 +574,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
584
574
|
subproject=_SUBPROJECT,
|
585
575
|
custom_tags=dict([("autogen", True)]),
|
586
576
|
)
|
587
|
-
@telemetry.add_stmt_params_to_df(
|
588
|
-
project=_PROJECT,
|
589
|
-
subproject=_SUBPROJECT,
|
590
|
-
custom_tags=dict([("autogen", True)]),
|
591
|
-
)
|
592
577
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
593
578
|
"""Method not supported for this class.
|
594
579
|
|
@@ -645,7 +630,8 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
645
630
|
if False:
|
646
631
|
self.fit(dataset)
|
647
632
|
assert self._sklearn_object is not None
|
648
|
-
|
633
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
634
|
+
return labels
|
649
635
|
else:
|
650
636
|
raise NotImplementedError
|
651
637
|
|
@@ -681,6 +667,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
681
667
|
output_cols = []
|
682
668
|
|
683
669
|
# Make sure column names are valid snowflake identifiers.
|
670
|
+
assert output_cols is not None # Make MyPy happy
|
684
671
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
685
672
|
|
686
673
|
return rv
|
@@ -691,11 +678,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
691
678
|
subproject=_SUBPROJECT,
|
692
679
|
custom_tags=dict([("autogen", True)]),
|
693
680
|
)
|
694
|
-
@telemetry.add_stmt_params_to_df(
|
695
|
-
project=_PROJECT,
|
696
|
-
subproject=_SUBPROJECT,
|
697
|
-
custom_tags=dict([("autogen", True)]),
|
698
|
-
)
|
699
681
|
def predict_proba(
|
700
682
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
701
683
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -736,11 +718,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
736
718
|
subproject=_SUBPROJECT,
|
737
719
|
custom_tags=dict([("autogen", True)]),
|
738
720
|
)
|
739
|
-
@telemetry.add_stmt_params_to_df(
|
740
|
-
project=_PROJECT,
|
741
|
-
subproject=_SUBPROJECT,
|
742
|
-
custom_tags=dict([("autogen", True)]),
|
743
|
-
)
|
744
721
|
def predict_log_proba(
|
745
722
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
746
723
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -777,16 +754,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
777
754
|
return output_df
|
778
755
|
|
779
756
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
780
|
-
@telemetry.send_api_usage_telemetry(
|
781
|
-
project=_PROJECT,
|
782
|
-
subproject=_SUBPROJECT,
|
783
|
-
custom_tags=dict([("autogen", True)]),
|
784
|
-
)
|
785
|
-
@telemetry.add_stmt_params_to_df(
|
786
|
-
project=_PROJECT,
|
787
|
-
subproject=_SUBPROJECT,
|
788
|
-
custom_tags=dict([("autogen", True)]),
|
789
|
-
)
|
790
757
|
def decision_function(
|
791
758
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
792
759
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -887,11 +854,6 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
887
854
|
subproject=_SUBPROJECT,
|
888
855
|
custom_tags=dict([("autogen", True)]),
|
889
856
|
)
|
890
|
-
@telemetry.add_stmt_params_to_df(
|
891
|
-
project=_PROJECT,
|
892
|
-
subproject=_SUBPROJECT,
|
893
|
-
custom_tags=dict([("autogen", True)]),
|
894
|
-
)
|
895
857
|
def kneighbors(
|
896
858
|
self,
|
897
859
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -951,18 +913,28 @@ class PassiveAggressiveRegressor(BaseTransformer):
|
|
951
913
|
# For classifier, the type of predict is the same as the type of label
|
952
914
|
if self._sklearn_object._estimator_type == 'classifier':
|
953
915
|
# label columns is the desired type for output
|
954
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
916
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
955
917
|
# rename the output columns
|
956
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
918
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
919
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
920
|
+
([] if self._drop_input_cols else inputs)
|
921
|
+
+ outputs)
|
922
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
923
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
924
|
+
# Clusterer returns int64 cluster labels.
|
925
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
926
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
957
927
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
958
928
|
([] if self._drop_input_cols else inputs)
|
959
929
|
+ outputs)
|
930
|
+
|
960
931
|
# For regressor, the type of predict is float64
|
961
932
|
elif self._sklearn_object._estimator_type == 'regressor':
|
962
933
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
963
934
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
964
935
|
([] if self._drop_input_cols else inputs)
|
965
936
|
+ outputs)
|
937
|
+
|
966
938
|
for prob_func in PROB_FUNCTIONS:
|
967
939
|
if hasattr(self, prob_func):
|
968
940
|
output_cols_prefix: str = f"{prob_func}_"
|