snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LassoLarsCV(BaseTransformer):
57
58
  r"""Cross-validated Lasso, using the LARS algorithm
58
59
  For more details on this class, see [sklearn.linear_model.LassoLarsCV]
@@ -60,6 +61,51 @@ class LassoLarsCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  fit_intercept: bool, default=True
64
110
  Whether to calculate the intercept for this model. If set
65
111
  to false, no intercept will be used in calculations
@@ -129,35 +175,6 @@ class LassoLarsCV(BaseTransformer):
129
175
  coordinate descent Lasso estimator.
130
176
  As a consequence using LassoLarsCV only makes sense for problems where
131
177
  a sparse solution is expected and/or reached.
132
-
133
- input_cols: Optional[Union[str, List[str]]]
134
- A string or list of strings representing column names that contain features.
135
- If this parameter is not specified, all columns in the input DataFrame except
136
- the columns specified by label_cols and sample_weight_col parameters are
137
- considered input columns.
138
-
139
- label_cols: Optional[Union[str, List[str]]]
140
- A string or list of strings representing column names that contain labels.
141
- This is a required param for estimators, as there is no way to infer these
142
- columns. If this parameter is not specified, then object is fitted without
143
- labels (like a transformer).
144
-
145
- output_cols: Optional[Union[str, List[str]]]
146
- A string or list of strings representing column names that will store the
147
- output of predict and transform operations. The length of output_cols must
148
- match the expected number of output columns from the specific estimator or
149
- transformer class used.
150
- If this parameter is not specified, output column names are derived by
151
- adding an OUTPUT_ prefix to the label column names. These inferred output
152
- column names work for estimator's predict() method, but output_cols must
153
- be set explicitly for transformers.
154
-
155
- sample_weight_col: Optional[str]
156
- A string representing the column name containing the sample weights.
157
- This argument is only required when working with weighted datasets.
158
-
159
- drop_input_cols: Optional[bool], default=False
160
- If set, the response of predict(), transform() methods will not contain input columns.
161
178
  """
162
179
 
163
180
  def __init__( # type: ignore[no-untyped-def]
@@ -177,6 +194,7 @@ class LassoLarsCV(BaseTransformer):
177
194
  input_cols: Optional[Union[str, Iterable[str]]] = None,
178
195
  output_cols: Optional[Union[str, Iterable[str]]] = None,
179
196
  label_cols: Optional[Union[str, Iterable[str]]] = None,
197
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
180
198
  drop_input_cols: Optional[bool] = False,
181
199
  sample_weight_col: Optional[str] = None,
182
200
  ) -> None:
@@ -185,9 +203,10 @@ class LassoLarsCV(BaseTransformer):
185
203
  self.set_input_cols(input_cols)
186
204
  self.set_output_cols(output_cols)
187
205
  self.set_label_cols(label_cols)
206
+ self.set_passthrough_cols(passthrough_cols)
188
207
  self.set_drop_input_cols(drop_input_cols)
189
208
  self.set_sample_weight_col(sample_weight_col)
190
- deps = set(SklearnWrapperProvider().dependencies)
209
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
191
210
 
192
211
  self._deps = list(deps)
193
212
 
@@ -206,13 +225,14 @@ class LassoLarsCV(BaseTransformer):
206
225
  args=init_args,
207
226
  klass=sklearn.linear_model.LassoLarsCV
208
227
  )
209
- self._sklearn_object = sklearn.linear_model.LassoLarsCV(
228
+ self._sklearn_object: Any = sklearn.linear_model.LassoLarsCV(
210
229
  **cleaned_up_init_args,
211
230
  )
212
231
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
213
232
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
214
233
  self._snowpark_cols: Optional[List[str]] = self.input_cols
215
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
234
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
235
+ self._autogenerated = True
216
236
 
217
237
  def _get_rand_id(self) -> str:
218
238
  """
@@ -223,24 +243,6 @@ class LassoLarsCV(BaseTransformer):
223
243
  """
224
244
  return str(uuid4()).replace("-", "_").upper()
225
245
 
226
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
227
- """
228
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
229
-
230
- Args:
231
- dataset: Input dataset.
232
- """
233
- if not self.input_cols:
234
- cols = [
235
- c for c in dataset.columns
236
- if c not in self.get_label_cols() and c != self.sample_weight_col
237
- ]
238
- self.set_input_cols(input_cols=cols)
239
-
240
- if not self.output_cols:
241
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
242
- self.set_output_cols(output_cols=cols)
243
-
244
246
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LassoLarsCV":
245
247
  """
246
248
  Input columns setter.
@@ -286,54 +288,48 @@ class LassoLarsCV(BaseTransformer):
286
288
  self
287
289
  """
288
290
  self._infer_input_output_cols(dataset)
289
- if isinstance(dataset, pd.DataFrame):
290
- assert self._sklearn_object is not None # keep mypy happy
291
- self._sklearn_object = self._handlers.fit_pandas(
292
- dataset,
293
- self._sklearn_object,
294
- self.input_cols,
295
- self.label_cols,
296
- self.sample_weight_col
297
- )
298
- elif isinstance(dataset, DataFrame):
299
- self._fit_snowpark(dataset)
300
- else:
301
- raise TypeError(
302
- f"Unexpected dataset type: {type(dataset)}."
303
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
304
- )
291
+ if isinstance(dataset, DataFrame):
292
+ session = dataset._session
293
+ assert session is not None # keep mypy happy
294
+ # Validate that key package version in user workspace are supported in snowflake conda channel
295
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
296
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
297
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
298
+
299
+ # Specify input columns so column pruning will be enforced
300
+ selected_cols = self._get_active_columns()
301
+ if len(selected_cols) > 0:
302
+ dataset = dataset.select(selected_cols)
303
+
304
+ self._snowpark_cols = dataset.select(self.input_cols).columns
305
+
306
+ # If we are already in a stored procedure, no need to kick off another one.
307
+ if SNOWML_SPROC_ENV in os.environ:
308
+ statement_params = telemetry.get_function_usage_statement_params(
309
+ project=_PROJECT,
310
+ subproject=_SUBPROJECT,
311
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsCV.__class__.__name__),
312
+ api_calls=[Session.call],
313
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
314
+ )
315
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
316
+ pd_df.columns = dataset.columns
317
+ dataset = pd_df
318
+
319
+ model_trainer = ModelTrainerBuilder.build(
320
+ estimator=self._sklearn_object,
321
+ dataset=dataset,
322
+ input_cols=self.input_cols,
323
+ label_cols=self.label_cols,
324
+ sample_weight_col=self.sample_weight_col,
325
+ autogenerated=self._autogenerated,
326
+ subproject=_SUBPROJECT
327
+ )
328
+ self._sklearn_object = model_trainer.train()
305
329
  self._is_fitted = True
306
330
  self._get_model_signatures(dataset)
307
331
  return self
308
332
 
309
- def _fit_snowpark(self, dataset: DataFrame) -> None:
310
- session = dataset._session
311
- assert session is not None # keep mypy happy
312
- # Validate that key package version in user workspace are supported in snowflake conda channel
313
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
314
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
315
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
316
-
317
- # Specify input columns so column pruning will be enforced
318
- selected_cols = self._get_active_columns()
319
- if len(selected_cols) > 0:
320
- dataset = dataset.select(selected_cols)
321
-
322
- estimator = self._sklearn_object
323
- assert estimator is not None # Keep mypy happy
324
-
325
- self._snowpark_cols = dataset.select(self.input_cols).columns
326
-
327
- self._sklearn_object = self._handlers.fit_snowpark(
328
- dataset,
329
- session,
330
- estimator,
331
- ["snowflake-snowpark-python"] + self._get_dependencies(),
332
- self.input_cols,
333
- self.label_cols,
334
- self.sample_weight_col,
335
- )
336
-
337
333
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
338
334
  if self._drop_input_cols:
339
335
  return []
@@ -521,11 +517,6 @@ class LassoLarsCV(BaseTransformer):
521
517
  subproject=_SUBPROJECT,
522
518
  custom_tags=dict([("autogen", True)]),
523
519
  )
524
- @telemetry.add_stmt_params_to_df(
525
- project=_PROJECT,
526
- subproject=_SUBPROJECT,
527
- custom_tags=dict([("autogen", True)]),
528
- )
529
520
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
530
521
  """Predict using the linear model
531
522
  For more details on this function, see [sklearn.linear_model.LassoLarsCV.predict]
@@ -579,11 +570,6 @@ class LassoLarsCV(BaseTransformer):
579
570
  subproject=_SUBPROJECT,
580
571
  custom_tags=dict([("autogen", True)]),
581
572
  )
582
- @telemetry.add_stmt_params_to_df(
583
- project=_PROJECT,
584
- subproject=_SUBPROJECT,
585
- custom_tags=dict([("autogen", True)]),
586
- )
587
573
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
588
574
  """Method not supported for this class.
589
575
 
@@ -640,7 +626,8 @@ class LassoLarsCV(BaseTransformer):
640
626
  if False:
641
627
  self.fit(dataset)
642
628
  assert self._sklearn_object is not None
643
- return self._sklearn_object.labels_
629
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
630
+ return labels
644
631
  else:
645
632
  raise NotImplementedError
646
633
 
@@ -676,6 +663,7 @@ class LassoLarsCV(BaseTransformer):
676
663
  output_cols = []
677
664
 
678
665
  # Make sure column names are valid snowflake identifiers.
666
+ assert output_cols is not None # Make MyPy happy
679
667
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
680
668
 
681
669
  return rv
@@ -686,11 +674,6 @@ class LassoLarsCV(BaseTransformer):
686
674
  subproject=_SUBPROJECT,
687
675
  custom_tags=dict([("autogen", True)]),
688
676
  )
689
- @telemetry.add_stmt_params_to_df(
690
- project=_PROJECT,
691
- subproject=_SUBPROJECT,
692
- custom_tags=dict([("autogen", True)]),
693
- )
694
677
  def predict_proba(
695
678
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
696
679
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -731,11 +714,6 @@ class LassoLarsCV(BaseTransformer):
731
714
  subproject=_SUBPROJECT,
732
715
  custom_tags=dict([("autogen", True)]),
733
716
  )
734
- @telemetry.add_stmt_params_to_df(
735
- project=_PROJECT,
736
- subproject=_SUBPROJECT,
737
- custom_tags=dict([("autogen", True)]),
738
- )
739
717
  def predict_log_proba(
740
718
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
741
719
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -772,16 +750,6 @@ class LassoLarsCV(BaseTransformer):
772
750
  return output_df
773
751
 
774
752
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
775
- @telemetry.send_api_usage_telemetry(
776
- project=_PROJECT,
777
- subproject=_SUBPROJECT,
778
- custom_tags=dict([("autogen", True)]),
779
- )
780
- @telemetry.add_stmt_params_to_df(
781
- project=_PROJECT,
782
- subproject=_SUBPROJECT,
783
- custom_tags=dict([("autogen", True)]),
784
- )
785
753
  def decision_function(
786
754
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
787
755
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -882,11 +850,6 @@ class LassoLarsCV(BaseTransformer):
882
850
  subproject=_SUBPROJECT,
883
851
  custom_tags=dict([("autogen", True)]),
884
852
  )
885
- @telemetry.add_stmt_params_to_df(
886
- project=_PROJECT,
887
- subproject=_SUBPROJECT,
888
- custom_tags=dict([("autogen", True)]),
889
- )
890
853
  def kneighbors(
891
854
  self,
892
855
  dataset: Union[DataFrame, pd.DataFrame],
@@ -946,18 +909,28 @@ class LassoLarsCV(BaseTransformer):
946
909
  # For classifier, the type of predict is the same as the type of label
947
910
  if self._sklearn_object._estimator_type == 'classifier':
948
911
  # label columns is the desired type for output
949
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
912
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
950
913
  # rename the output columns
951
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
914
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
952
915
  self._model_signature_dict["predict"] = ModelSignature(inputs,
953
916
  ([] if self._drop_input_cols else inputs)
954
917
  + outputs)
918
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
919
+ # For outlier models, returns -1 for outliers and 1 for inliers.
920
+ # Clusterer returns int64 cluster labels.
921
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
922
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
923
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
924
+ ([] if self._drop_input_cols else inputs)
925
+ + outputs)
926
+
955
927
  # For regressor, the type of predict is float64
956
928
  elif self._sklearn_object._estimator_type == 'regressor':
957
929
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
958
930
  self._model_signature_dict["predict"] = ModelSignature(inputs,
959
931
  ([] if self._drop_input_cols else inputs)
960
932
  + outputs)
933
+
961
934
  for prob_func in PROB_FUNCTIONS:
962
935
  if hasattr(self, prob_func):
963
936
  output_cols_prefix: str = f"{prob_func}_"