snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LassoLarsCV(BaseTransformer):
|
57
58
|
r"""Cross-validated Lasso, using the LARS algorithm
|
58
59
|
For more details on this class, see [sklearn.linear_model.LassoLarsCV]
|
@@ -60,6 +61,51 @@ class LassoLarsCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
fit_intercept: bool, default=True
|
64
110
|
Whether to calculate the intercept for this model. If set
|
65
111
|
to false, no intercept will be used in calculations
|
@@ -129,35 +175,6 @@ class LassoLarsCV(BaseTransformer):
|
|
129
175
|
coordinate descent Lasso estimator.
|
130
176
|
As a consequence using LassoLarsCV only makes sense for problems where
|
131
177
|
a sparse solution is expected and/or reached.
|
132
|
-
|
133
|
-
input_cols: Optional[Union[str, List[str]]]
|
134
|
-
A string or list of strings representing column names that contain features.
|
135
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
136
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
137
|
-
considered input columns.
|
138
|
-
|
139
|
-
label_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or list of strings representing column names that contain labels.
|
141
|
-
This is a required param for estimators, as there is no way to infer these
|
142
|
-
columns. If this parameter is not specified, then object is fitted without
|
143
|
-
labels (like a transformer).
|
144
|
-
|
145
|
-
output_cols: Optional[Union[str, List[str]]]
|
146
|
-
A string or list of strings representing column names that will store the
|
147
|
-
output of predict and transform operations. The length of output_cols must
|
148
|
-
match the expected number of output columns from the specific estimator or
|
149
|
-
transformer class used.
|
150
|
-
If this parameter is not specified, output column names are derived by
|
151
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
152
|
-
column names work for estimator's predict() method, but output_cols must
|
153
|
-
be set explicitly for transformers.
|
154
|
-
|
155
|
-
sample_weight_col: Optional[str]
|
156
|
-
A string representing the column name containing the sample weights.
|
157
|
-
This argument is only required when working with weighted datasets.
|
158
|
-
|
159
|
-
drop_input_cols: Optional[bool], default=False
|
160
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
161
178
|
"""
|
162
179
|
|
163
180
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -177,6 +194,7 @@ class LassoLarsCV(BaseTransformer):
|
|
177
194
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
178
195
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
179
196
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
197
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
180
198
|
drop_input_cols: Optional[bool] = False,
|
181
199
|
sample_weight_col: Optional[str] = None,
|
182
200
|
) -> None:
|
@@ -185,9 +203,10 @@ class LassoLarsCV(BaseTransformer):
|
|
185
203
|
self.set_input_cols(input_cols)
|
186
204
|
self.set_output_cols(output_cols)
|
187
205
|
self.set_label_cols(label_cols)
|
206
|
+
self.set_passthrough_cols(passthrough_cols)
|
188
207
|
self.set_drop_input_cols(drop_input_cols)
|
189
208
|
self.set_sample_weight_col(sample_weight_col)
|
190
|
-
deps = set(
|
209
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
191
210
|
|
192
211
|
self._deps = list(deps)
|
193
212
|
|
@@ -206,13 +225,14 @@ class LassoLarsCV(BaseTransformer):
|
|
206
225
|
args=init_args,
|
207
226
|
klass=sklearn.linear_model.LassoLarsCV
|
208
227
|
)
|
209
|
-
self._sklearn_object = sklearn.linear_model.LassoLarsCV(
|
228
|
+
self._sklearn_object: Any = sklearn.linear_model.LassoLarsCV(
|
210
229
|
**cleaned_up_init_args,
|
211
230
|
)
|
212
231
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
213
232
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
214
233
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
215
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
234
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
235
|
+
self._autogenerated = True
|
216
236
|
|
217
237
|
def _get_rand_id(self) -> str:
|
218
238
|
"""
|
@@ -223,24 +243,6 @@ class LassoLarsCV(BaseTransformer):
|
|
223
243
|
"""
|
224
244
|
return str(uuid4()).replace("-", "_").upper()
|
225
245
|
|
226
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
227
|
-
"""
|
228
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
229
|
-
|
230
|
-
Args:
|
231
|
-
dataset: Input dataset.
|
232
|
-
"""
|
233
|
-
if not self.input_cols:
|
234
|
-
cols = [
|
235
|
-
c for c in dataset.columns
|
236
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
237
|
-
]
|
238
|
-
self.set_input_cols(input_cols=cols)
|
239
|
-
|
240
|
-
if not self.output_cols:
|
241
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
242
|
-
self.set_output_cols(output_cols=cols)
|
243
|
-
|
244
246
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LassoLarsCV":
|
245
247
|
"""
|
246
248
|
Input columns setter.
|
@@ -286,54 +288,48 @@ class LassoLarsCV(BaseTransformer):
|
|
286
288
|
self
|
287
289
|
"""
|
288
290
|
self._infer_input_output_cols(dataset)
|
289
|
-
if isinstance(dataset,
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
self.
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
291
|
+
if isinstance(dataset, DataFrame):
|
292
|
+
session = dataset._session
|
293
|
+
assert session is not None # keep mypy happy
|
294
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
295
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
296
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
297
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
298
|
+
|
299
|
+
# Specify input columns so column pruning will be enforced
|
300
|
+
selected_cols = self._get_active_columns()
|
301
|
+
if len(selected_cols) > 0:
|
302
|
+
dataset = dataset.select(selected_cols)
|
303
|
+
|
304
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
305
|
+
|
306
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
307
|
+
if SNOWML_SPROC_ENV in os.environ:
|
308
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
309
|
+
project=_PROJECT,
|
310
|
+
subproject=_SUBPROJECT,
|
311
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsCV.__class__.__name__),
|
312
|
+
api_calls=[Session.call],
|
313
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
314
|
+
)
|
315
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
316
|
+
pd_df.columns = dataset.columns
|
317
|
+
dataset = pd_df
|
318
|
+
|
319
|
+
model_trainer = ModelTrainerBuilder.build(
|
320
|
+
estimator=self._sklearn_object,
|
321
|
+
dataset=dataset,
|
322
|
+
input_cols=self.input_cols,
|
323
|
+
label_cols=self.label_cols,
|
324
|
+
sample_weight_col=self.sample_weight_col,
|
325
|
+
autogenerated=self._autogenerated,
|
326
|
+
subproject=_SUBPROJECT
|
327
|
+
)
|
328
|
+
self._sklearn_object = model_trainer.train()
|
305
329
|
self._is_fitted = True
|
306
330
|
self._get_model_signatures(dataset)
|
307
331
|
return self
|
308
332
|
|
309
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
310
|
-
session = dataset._session
|
311
|
-
assert session is not None # keep mypy happy
|
312
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
313
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
314
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
315
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
316
|
-
|
317
|
-
# Specify input columns so column pruning will be enforced
|
318
|
-
selected_cols = self._get_active_columns()
|
319
|
-
if len(selected_cols) > 0:
|
320
|
-
dataset = dataset.select(selected_cols)
|
321
|
-
|
322
|
-
estimator = self._sklearn_object
|
323
|
-
assert estimator is not None # Keep mypy happy
|
324
|
-
|
325
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
326
|
-
|
327
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
328
|
-
dataset,
|
329
|
-
session,
|
330
|
-
estimator,
|
331
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
332
|
-
self.input_cols,
|
333
|
-
self.label_cols,
|
334
|
-
self.sample_weight_col,
|
335
|
-
)
|
336
|
-
|
337
333
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
338
334
|
if self._drop_input_cols:
|
339
335
|
return []
|
@@ -521,11 +517,6 @@ class LassoLarsCV(BaseTransformer):
|
|
521
517
|
subproject=_SUBPROJECT,
|
522
518
|
custom_tags=dict([("autogen", True)]),
|
523
519
|
)
|
524
|
-
@telemetry.add_stmt_params_to_df(
|
525
|
-
project=_PROJECT,
|
526
|
-
subproject=_SUBPROJECT,
|
527
|
-
custom_tags=dict([("autogen", True)]),
|
528
|
-
)
|
529
520
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
530
521
|
"""Predict using the linear model
|
531
522
|
For more details on this function, see [sklearn.linear_model.LassoLarsCV.predict]
|
@@ -579,11 +570,6 @@ class LassoLarsCV(BaseTransformer):
|
|
579
570
|
subproject=_SUBPROJECT,
|
580
571
|
custom_tags=dict([("autogen", True)]),
|
581
572
|
)
|
582
|
-
@telemetry.add_stmt_params_to_df(
|
583
|
-
project=_PROJECT,
|
584
|
-
subproject=_SUBPROJECT,
|
585
|
-
custom_tags=dict([("autogen", True)]),
|
586
|
-
)
|
587
573
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
588
574
|
"""Method not supported for this class.
|
589
575
|
|
@@ -640,7 +626,8 @@ class LassoLarsCV(BaseTransformer):
|
|
640
626
|
if False:
|
641
627
|
self.fit(dataset)
|
642
628
|
assert self._sklearn_object is not None
|
643
|
-
|
629
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
630
|
+
return labels
|
644
631
|
else:
|
645
632
|
raise NotImplementedError
|
646
633
|
|
@@ -676,6 +663,7 @@ class LassoLarsCV(BaseTransformer):
|
|
676
663
|
output_cols = []
|
677
664
|
|
678
665
|
# Make sure column names are valid snowflake identifiers.
|
666
|
+
assert output_cols is not None # Make MyPy happy
|
679
667
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
680
668
|
|
681
669
|
return rv
|
@@ -686,11 +674,6 @@ class LassoLarsCV(BaseTransformer):
|
|
686
674
|
subproject=_SUBPROJECT,
|
687
675
|
custom_tags=dict([("autogen", True)]),
|
688
676
|
)
|
689
|
-
@telemetry.add_stmt_params_to_df(
|
690
|
-
project=_PROJECT,
|
691
|
-
subproject=_SUBPROJECT,
|
692
|
-
custom_tags=dict([("autogen", True)]),
|
693
|
-
)
|
694
677
|
def predict_proba(
|
695
678
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
696
679
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -731,11 +714,6 @@ class LassoLarsCV(BaseTransformer):
|
|
731
714
|
subproject=_SUBPROJECT,
|
732
715
|
custom_tags=dict([("autogen", True)]),
|
733
716
|
)
|
734
|
-
@telemetry.add_stmt_params_to_df(
|
735
|
-
project=_PROJECT,
|
736
|
-
subproject=_SUBPROJECT,
|
737
|
-
custom_tags=dict([("autogen", True)]),
|
738
|
-
)
|
739
717
|
def predict_log_proba(
|
740
718
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
741
719
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -772,16 +750,6 @@ class LassoLarsCV(BaseTransformer):
|
|
772
750
|
return output_df
|
773
751
|
|
774
752
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
775
|
-
@telemetry.send_api_usage_telemetry(
|
776
|
-
project=_PROJECT,
|
777
|
-
subproject=_SUBPROJECT,
|
778
|
-
custom_tags=dict([("autogen", True)]),
|
779
|
-
)
|
780
|
-
@telemetry.add_stmt_params_to_df(
|
781
|
-
project=_PROJECT,
|
782
|
-
subproject=_SUBPROJECT,
|
783
|
-
custom_tags=dict([("autogen", True)]),
|
784
|
-
)
|
785
753
|
def decision_function(
|
786
754
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
787
755
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -882,11 +850,6 @@ class LassoLarsCV(BaseTransformer):
|
|
882
850
|
subproject=_SUBPROJECT,
|
883
851
|
custom_tags=dict([("autogen", True)]),
|
884
852
|
)
|
885
|
-
@telemetry.add_stmt_params_to_df(
|
886
|
-
project=_PROJECT,
|
887
|
-
subproject=_SUBPROJECT,
|
888
|
-
custom_tags=dict([("autogen", True)]),
|
889
|
-
)
|
890
853
|
def kneighbors(
|
891
854
|
self,
|
892
855
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -946,18 +909,28 @@ class LassoLarsCV(BaseTransformer):
|
|
946
909
|
# For classifier, the type of predict is the same as the type of label
|
947
910
|
if self._sklearn_object._estimator_type == 'classifier':
|
948
911
|
# label columns is the desired type for output
|
949
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
912
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
950
913
|
# rename the output columns
|
951
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
914
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
952
915
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
953
916
|
([] if self._drop_input_cols else inputs)
|
954
917
|
+ outputs)
|
918
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
919
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
920
|
+
# Clusterer returns int64 cluster labels.
|
921
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
922
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
923
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
924
|
+
([] if self._drop_input_cols else inputs)
|
925
|
+
+ outputs)
|
926
|
+
|
955
927
|
# For regressor, the type of predict is float64
|
956
928
|
elif self._sklearn_object._estimator_type == 'regressor':
|
957
929
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
958
930
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
959
931
|
([] if self._drop_input_cols else inputs)
|
960
932
|
+ outputs)
|
933
|
+
|
961
934
|
for prob_func in PROB_FUNCTIONS:
|
962
935
|
if hasattr(self, prob_func):
|
963
936
|
output_cols_prefix: str = f"{prob_func}_"
|