snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class OneVsOneClassifier(BaseTransformer):
|
57
58
|
r"""One-vs-one multiclass strategy
|
58
59
|
For more details on this class, see [sklearn.multiclass.OneVsOneClassifier]
|
@@ -60,49 +61,65 @@ class OneVsOneClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
estimator: estimator object
|
64
|
-
A regressor or a classifier that implements :term:`fit`.
|
65
|
-
When a classifier is passed, :term:`decision_function` will be used
|
66
|
-
in priority and it will fallback to :term:`predict_proba` if it is not
|
67
|
-
available.
|
68
|
-
When a regressor is passed, :term:`predict` is used.
|
69
|
-
|
70
|
-
n_jobs: int, default=None
|
71
|
-
The number of jobs to use for the computation: the `n_classes * (
|
72
|
-
n_classes - 1) / 2` OVO problems are computed in parallel.
|
73
|
-
|
74
|
-
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
75
|
-
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
76
|
-
for more details.
|
77
64
|
|
78
65
|
input_cols: Optional[Union[str, List[str]]]
|
79
66
|
A string or list of strings representing column names that contain features.
|
80
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
81
|
-
the columns specified by label_cols
|
82
|
-
considered input columns.
|
83
|
-
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
84
72
|
label_cols: Optional[Union[str, List[str]]]
|
85
73
|
A string or list of strings representing column names that contain labels.
|
86
|
-
|
87
|
-
|
88
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
89
76
|
|
90
77
|
output_cols: Optional[Union[str, List[str]]]
|
91
78
|
A string or list of strings representing column names that will store the
|
92
79
|
output of predict and transform operations. The length of output_cols must
|
93
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
94
81
|
transformer class used.
|
95
|
-
If this parameter
|
96
|
-
|
97
|
-
|
98
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
99
91
|
|
100
92
|
sample_weight_col: Optional[str]
|
101
93
|
A string representing the column name containing the sample weights.
|
102
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
105
|
|
104
106
|
drop_input_cols: Optional[bool], default=False
|
105
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
estimator: estimator object
|
110
|
+
A regressor or a classifier that implements :term:`fit`.
|
111
|
+
When a classifier is passed, :term:`decision_function` will be used
|
112
|
+
in priority and it will fallback to :term:`predict_proba` if it is not
|
113
|
+
available.
|
114
|
+
When a regressor is passed, :term:`predict` is used.
|
115
|
+
|
116
|
+
n_jobs: int, default=None
|
117
|
+
The number of jobs to use for the computation: the `n_classes * (
|
118
|
+
n_classes - 1) / 2` OVO problems are computed in parallel.
|
119
|
+
|
120
|
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
121
|
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
122
|
+
for more details.
|
106
123
|
"""
|
107
124
|
|
108
125
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -113,6 +130,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
113
130
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
114
131
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
115
132
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
133
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
116
134
|
drop_input_cols: Optional[bool] = False,
|
117
135
|
sample_weight_col: Optional[str] = None,
|
118
136
|
) -> None:
|
@@ -121,9 +139,10 @@ class OneVsOneClassifier(BaseTransformer):
|
|
121
139
|
self.set_input_cols(input_cols)
|
122
140
|
self.set_output_cols(output_cols)
|
123
141
|
self.set_label_cols(label_cols)
|
142
|
+
self.set_passthrough_cols(passthrough_cols)
|
124
143
|
self.set_drop_input_cols(drop_input_cols)
|
125
144
|
self.set_sample_weight_col(sample_weight_col)
|
126
|
-
deps = set(
|
145
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
127
146
|
deps = deps | gather_dependencies(estimator)
|
128
147
|
self._deps = list(deps)
|
129
148
|
estimator = transform_snowml_obj_to_sklearn_obj(estimator)
|
@@ -133,13 +152,14 @@ class OneVsOneClassifier(BaseTransformer):
|
|
133
152
|
args=init_args,
|
134
153
|
klass=sklearn.multiclass.OneVsOneClassifier
|
135
154
|
)
|
136
|
-
self._sklearn_object = sklearn.multiclass.OneVsOneClassifier(
|
155
|
+
self._sklearn_object: Any = sklearn.multiclass.OneVsOneClassifier(
|
137
156
|
**cleaned_up_init_args,
|
138
157
|
)
|
139
158
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
140
159
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
141
160
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
142
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OneVsOneClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
161
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OneVsOneClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
162
|
+
self._autogenerated = True
|
143
163
|
|
144
164
|
def _get_rand_id(self) -> str:
|
145
165
|
"""
|
@@ -150,24 +170,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
150
170
|
"""
|
151
171
|
return str(uuid4()).replace("-", "_").upper()
|
152
172
|
|
153
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
154
|
-
"""
|
155
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
156
|
-
|
157
|
-
Args:
|
158
|
-
dataset: Input dataset.
|
159
|
-
"""
|
160
|
-
if not self.input_cols:
|
161
|
-
cols = [
|
162
|
-
c for c in dataset.columns
|
163
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
164
|
-
]
|
165
|
-
self.set_input_cols(input_cols=cols)
|
166
|
-
|
167
|
-
if not self.output_cols:
|
168
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
169
|
-
self.set_output_cols(output_cols=cols)
|
170
|
-
|
171
173
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "OneVsOneClassifier":
|
172
174
|
"""
|
173
175
|
Input columns setter.
|
@@ -213,54 +215,48 @@ class OneVsOneClassifier(BaseTransformer):
|
|
213
215
|
self
|
214
216
|
"""
|
215
217
|
self._infer_input_output_cols(dataset)
|
216
|
-
if isinstance(dataset,
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
self.
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
218
|
+
if isinstance(dataset, DataFrame):
|
219
|
+
session = dataset._session
|
220
|
+
assert session is not None # keep mypy happy
|
221
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
222
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
223
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
224
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
225
|
+
|
226
|
+
# Specify input columns so column pruning will be enforced
|
227
|
+
selected_cols = self._get_active_columns()
|
228
|
+
if len(selected_cols) > 0:
|
229
|
+
dataset = dataset.select(selected_cols)
|
230
|
+
|
231
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
232
|
+
|
233
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
234
|
+
if SNOWML_SPROC_ENV in os.environ:
|
235
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
236
|
+
project=_PROJECT,
|
237
|
+
subproject=_SUBPROJECT,
|
238
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OneVsOneClassifier.__class__.__name__),
|
239
|
+
api_calls=[Session.call],
|
240
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
241
|
+
)
|
242
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
243
|
+
pd_df.columns = dataset.columns
|
244
|
+
dataset = pd_df
|
245
|
+
|
246
|
+
model_trainer = ModelTrainerBuilder.build(
|
247
|
+
estimator=self._sklearn_object,
|
248
|
+
dataset=dataset,
|
249
|
+
input_cols=self.input_cols,
|
250
|
+
label_cols=self.label_cols,
|
251
|
+
sample_weight_col=self.sample_weight_col,
|
252
|
+
autogenerated=self._autogenerated,
|
253
|
+
subproject=_SUBPROJECT
|
254
|
+
)
|
255
|
+
self._sklearn_object = model_trainer.train()
|
232
256
|
self._is_fitted = True
|
233
257
|
self._get_model_signatures(dataset)
|
234
258
|
return self
|
235
259
|
|
236
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
237
|
-
session = dataset._session
|
238
|
-
assert session is not None # keep mypy happy
|
239
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
240
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
241
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
242
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
243
|
-
|
244
|
-
# Specify input columns so column pruning will be enforced
|
245
|
-
selected_cols = self._get_active_columns()
|
246
|
-
if len(selected_cols) > 0:
|
247
|
-
dataset = dataset.select(selected_cols)
|
248
|
-
|
249
|
-
estimator = self._sklearn_object
|
250
|
-
assert estimator is not None # Keep mypy happy
|
251
|
-
|
252
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
253
|
-
|
254
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
255
|
-
dataset,
|
256
|
-
session,
|
257
|
-
estimator,
|
258
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
259
|
-
self.input_cols,
|
260
|
-
self.label_cols,
|
261
|
-
self.sample_weight_col,
|
262
|
-
)
|
263
|
-
|
264
260
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
265
261
|
if self._drop_input_cols:
|
266
262
|
return []
|
@@ -448,11 +444,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
448
444
|
subproject=_SUBPROJECT,
|
449
445
|
custom_tags=dict([("autogen", True)]),
|
450
446
|
)
|
451
|
-
@telemetry.add_stmt_params_to_df(
|
452
|
-
project=_PROJECT,
|
453
|
-
subproject=_SUBPROJECT,
|
454
|
-
custom_tags=dict([("autogen", True)]),
|
455
|
-
)
|
456
447
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
457
448
|
"""Estimate the best class label for each sample in X
|
458
449
|
For more details on this function, see [sklearn.multiclass.OneVsOneClassifier.predict]
|
@@ -506,11 +497,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
506
497
|
subproject=_SUBPROJECT,
|
507
498
|
custom_tags=dict([("autogen", True)]),
|
508
499
|
)
|
509
|
-
@telemetry.add_stmt_params_to_df(
|
510
|
-
project=_PROJECT,
|
511
|
-
subproject=_SUBPROJECT,
|
512
|
-
custom_tags=dict([("autogen", True)]),
|
513
|
-
)
|
514
500
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
515
501
|
"""Method not supported for this class.
|
516
502
|
|
@@ -567,7 +553,8 @@ class OneVsOneClassifier(BaseTransformer):
|
|
567
553
|
if False:
|
568
554
|
self.fit(dataset)
|
569
555
|
assert self._sklearn_object is not None
|
570
|
-
|
556
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
557
|
+
return labels
|
571
558
|
else:
|
572
559
|
raise NotImplementedError
|
573
560
|
|
@@ -603,6 +590,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
603
590
|
output_cols = []
|
604
591
|
|
605
592
|
# Make sure column names are valid snowflake identifiers.
|
593
|
+
assert output_cols is not None # Make MyPy happy
|
606
594
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
607
595
|
|
608
596
|
return rv
|
@@ -613,11 +601,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
613
601
|
subproject=_SUBPROJECT,
|
614
602
|
custom_tags=dict([("autogen", True)]),
|
615
603
|
)
|
616
|
-
@telemetry.add_stmt_params_to_df(
|
617
|
-
project=_PROJECT,
|
618
|
-
subproject=_SUBPROJECT,
|
619
|
-
custom_tags=dict([("autogen", True)]),
|
620
|
-
)
|
621
604
|
def predict_proba(
|
622
605
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
623
606
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -658,11 +641,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
658
641
|
subproject=_SUBPROJECT,
|
659
642
|
custom_tags=dict([("autogen", True)]),
|
660
643
|
)
|
661
|
-
@telemetry.add_stmt_params_to_df(
|
662
|
-
project=_PROJECT,
|
663
|
-
subproject=_SUBPROJECT,
|
664
|
-
custom_tags=dict([("autogen", True)]),
|
665
|
-
)
|
666
644
|
def predict_log_proba(
|
667
645
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
668
646
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -699,16 +677,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
699
677
|
return output_df
|
700
678
|
|
701
679
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
702
|
-
@telemetry.send_api_usage_telemetry(
|
703
|
-
project=_PROJECT,
|
704
|
-
subproject=_SUBPROJECT,
|
705
|
-
custom_tags=dict([("autogen", True)]),
|
706
|
-
)
|
707
|
-
@telemetry.add_stmt_params_to_df(
|
708
|
-
project=_PROJECT,
|
709
|
-
subproject=_SUBPROJECT,
|
710
|
-
custom_tags=dict([("autogen", True)]),
|
711
|
-
)
|
712
680
|
def decision_function(
|
713
681
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
714
682
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -811,11 +779,6 @@ class OneVsOneClassifier(BaseTransformer):
|
|
811
779
|
subproject=_SUBPROJECT,
|
812
780
|
custom_tags=dict([("autogen", True)]),
|
813
781
|
)
|
814
|
-
@telemetry.add_stmt_params_to_df(
|
815
|
-
project=_PROJECT,
|
816
|
-
subproject=_SUBPROJECT,
|
817
|
-
custom_tags=dict([("autogen", True)]),
|
818
|
-
)
|
819
782
|
def kneighbors(
|
820
783
|
self,
|
821
784
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -875,18 +838,28 @@ class OneVsOneClassifier(BaseTransformer):
|
|
875
838
|
# For classifier, the type of predict is the same as the type of label
|
876
839
|
if self._sklearn_object._estimator_type == 'classifier':
|
877
840
|
# label columns is the desired type for output
|
878
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
841
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
879
842
|
# rename the output columns
|
880
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
843
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
844
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
845
|
+
([] if self._drop_input_cols else inputs)
|
846
|
+
+ outputs)
|
847
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
848
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
849
|
+
# Clusterer returns int64 cluster labels.
|
850
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
851
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
881
852
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
882
853
|
([] if self._drop_input_cols else inputs)
|
883
854
|
+ outputs)
|
855
|
+
|
884
856
|
# For regressor, the type of predict is float64
|
885
857
|
elif self._sklearn_object._estimator_type == 'regressor':
|
886
858
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
887
859
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
888
860
|
([] if self._drop_input_cols else inputs)
|
889
861
|
+ outputs)
|
862
|
+
|
890
863
|
for prob_func in PROB_FUNCTIONS:
|
891
864
|
if hasattr(self, prob_func):
|
892
865
|
output_cols_prefix: str = f"{prob_func}_"
|