snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SGDClassifier(BaseTransformer):
57
58
  r"""Linear classifiers (SVM, logistic regression, etc
58
59
  For more details on this class, see [sklearn.linear_model.SGDClassifier]
@@ -60,6 +61,51 @@ class SGDClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  loss: {'hinge', 'log_loss', 'modified_huber', 'squared_hinge', 'perceptron', 'squared_error', 'huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'}, default='hinge'
64
110
  The loss function to be used.
65
111
 
@@ -214,35 +260,6 @@ class SGDClassifier(BaseTransformer):
214
260
  samples seen reaches `average`. So ``average=10`` will begin
215
261
  averaging after seeing 10 samples.
216
262
  Integer values must be in the range `[1, n_samples]`.
217
-
218
- input_cols: Optional[Union[str, List[str]]]
219
- A string or list of strings representing column names that contain features.
220
- If this parameter is not specified, all columns in the input DataFrame except
221
- the columns specified by label_cols and sample_weight_col parameters are
222
- considered input columns.
223
-
224
- label_cols: Optional[Union[str, List[str]]]
225
- A string or list of strings representing column names that contain labels.
226
- This is a required param for estimators, as there is no way to infer these
227
- columns. If this parameter is not specified, then object is fitted without
228
- labels (like a transformer).
229
-
230
- output_cols: Optional[Union[str, List[str]]]
231
- A string or list of strings representing column names that will store the
232
- output of predict and transform operations. The length of output_cols must
233
- match the expected number of output columns from the specific estimator or
234
- transformer class used.
235
- If this parameter is not specified, output column names are derived by
236
- adding an OUTPUT_ prefix to the label column names. These inferred output
237
- column names work for estimator's predict() method, but output_cols must
238
- be set explicitly for transformers.
239
-
240
- sample_weight_col: Optional[str]
241
- A string representing the column name containing the sample weights.
242
- This argument is only required when working with weighted datasets.
243
-
244
- drop_input_cols: Optional[bool], default=False
245
- If set, the response of predict(), transform() methods will not contain input columns.
246
263
  """
247
264
 
248
265
  def __init__( # type: ignore[no-untyped-def]
@@ -272,6 +289,7 @@ class SGDClassifier(BaseTransformer):
272
289
  input_cols: Optional[Union[str, Iterable[str]]] = None,
273
290
  output_cols: Optional[Union[str, Iterable[str]]] = None,
274
291
  label_cols: Optional[Union[str, Iterable[str]]] = None,
292
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
275
293
  drop_input_cols: Optional[bool] = False,
276
294
  sample_weight_col: Optional[str] = None,
277
295
  ) -> None:
@@ -280,9 +298,10 @@ class SGDClassifier(BaseTransformer):
280
298
  self.set_input_cols(input_cols)
281
299
  self.set_output_cols(output_cols)
282
300
  self.set_label_cols(label_cols)
301
+ self.set_passthrough_cols(passthrough_cols)
283
302
  self.set_drop_input_cols(drop_input_cols)
284
303
  self.set_sample_weight_col(sample_weight_col)
285
- deps = set(SklearnWrapperProvider().dependencies)
304
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
286
305
 
287
306
  self._deps = list(deps)
288
307
 
@@ -311,13 +330,14 @@ class SGDClassifier(BaseTransformer):
311
330
  args=init_args,
312
331
  klass=sklearn.linear_model.SGDClassifier
313
332
  )
314
- self._sklearn_object = sklearn.linear_model.SGDClassifier(
333
+ self._sklearn_object: Any = sklearn.linear_model.SGDClassifier(
315
334
  **cleaned_up_init_args,
316
335
  )
317
336
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
318
337
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
319
338
  self._snowpark_cols: Optional[List[str]] = self.input_cols
320
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
339
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
340
+ self._autogenerated = True
321
341
 
322
342
  def _get_rand_id(self) -> str:
323
343
  """
@@ -328,24 +348,6 @@ class SGDClassifier(BaseTransformer):
328
348
  """
329
349
  return str(uuid4()).replace("-", "_").upper()
330
350
 
331
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
332
- """
333
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
334
-
335
- Args:
336
- dataset: Input dataset.
337
- """
338
- if not self.input_cols:
339
- cols = [
340
- c for c in dataset.columns
341
- if c not in self.get_label_cols() and c != self.sample_weight_col
342
- ]
343
- self.set_input_cols(input_cols=cols)
344
-
345
- if not self.output_cols:
346
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
347
- self.set_output_cols(output_cols=cols)
348
-
349
351
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SGDClassifier":
350
352
  """
351
353
  Input columns setter.
@@ -391,54 +393,48 @@ class SGDClassifier(BaseTransformer):
391
393
  self
392
394
  """
393
395
  self._infer_input_output_cols(dataset)
394
- if isinstance(dataset, pd.DataFrame):
395
- assert self._sklearn_object is not None # keep mypy happy
396
- self._sklearn_object = self._handlers.fit_pandas(
397
- dataset,
398
- self._sklearn_object,
399
- self.input_cols,
400
- self.label_cols,
401
- self.sample_weight_col
402
- )
403
- elif isinstance(dataset, DataFrame):
404
- self._fit_snowpark(dataset)
405
- else:
406
- raise TypeError(
407
- f"Unexpected dataset type: {type(dataset)}."
408
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
409
- )
396
+ if isinstance(dataset, DataFrame):
397
+ session = dataset._session
398
+ assert session is not None # keep mypy happy
399
+ # Validate that key package version in user workspace are supported in snowflake conda channel
400
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
401
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
402
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
403
+
404
+ # Specify input columns so column pruning will be enforced
405
+ selected_cols = self._get_active_columns()
406
+ if len(selected_cols) > 0:
407
+ dataset = dataset.select(selected_cols)
408
+
409
+ self._snowpark_cols = dataset.select(self.input_cols).columns
410
+
411
+ # If we are already in a stored procedure, no need to kick off another one.
412
+ if SNOWML_SPROC_ENV in os.environ:
413
+ statement_params = telemetry.get_function_usage_statement_params(
414
+ project=_PROJECT,
415
+ subproject=_SUBPROJECT,
416
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDClassifier.__class__.__name__),
417
+ api_calls=[Session.call],
418
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
419
+ )
420
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
421
+ pd_df.columns = dataset.columns
422
+ dataset = pd_df
423
+
424
+ model_trainer = ModelTrainerBuilder.build(
425
+ estimator=self._sklearn_object,
426
+ dataset=dataset,
427
+ input_cols=self.input_cols,
428
+ label_cols=self.label_cols,
429
+ sample_weight_col=self.sample_weight_col,
430
+ autogenerated=self._autogenerated,
431
+ subproject=_SUBPROJECT
432
+ )
433
+ self._sklearn_object = model_trainer.train()
410
434
  self._is_fitted = True
411
435
  self._get_model_signatures(dataset)
412
436
  return self
413
437
 
414
- def _fit_snowpark(self, dataset: DataFrame) -> None:
415
- session = dataset._session
416
- assert session is not None # keep mypy happy
417
- # Validate that key package version in user workspace are supported in snowflake conda channel
418
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
419
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
420
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
421
-
422
- # Specify input columns so column pruning will be enforced
423
- selected_cols = self._get_active_columns()
424
- if len(selected_cols) > 0:
425
- dataset = dataset.select(selected_cols)
426
-
427
- estimator = self._sklearn_object
428
- assert estimator is not None # Keep mypy happy
429
-
430
- self._snowpark_cols = dataset.select(self.input_cols).columns
431
-
432
- self._sklearn_object = self._handlers.fit_snowpark(
433
- dataset,
434
- session,
435
- estimator,
436
- ["snowflake-snowpark-python"] + self._get_dependencies(),
437
- self.input_cols,
438
- self.label_cols,
439
- self.sample_weight_col,
440
- )
441
-
442
438
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
443
439
  if self._drop_input_cols:
444
440
  return []
@@ -626,11 +622,6 @@ class SGDClassifier(BaseTransformer):
626
622
  subproject=_SUBPROJECT,
627
623
  custom_tags=dict([("autogen", True)]),
628
624
  )
629
- @telemetry.add_stmt_params_to_df(
630
- project=_PROJECT,
631
- subproject=_SUBPROJECT,
632
- custom_tags=dict([("autogen", True)]),
633
- )
634
625
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
635
626
  """Predict class labels for samples in X
636
627
  For more details on this function, see [sklearn.linear_model.SGDClassifier.predict]
@@ -684,11 +675,6 @@ class SGDClassifier(BaseTransformer):
684
675
  subproject=_SUBPROJECT,
685
676
  custom_tags=dict([("autogen", True)]),
686
677
  )
687
- @telemetry.add_stmt_params_to_df(
688
- project=_PROJECT,
689
- subproject=_SUBPROJECT,
690
- custom_tags=dict([("autogen", True)]),
691
- )
692
678
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
693
679
  """Method not supported for this class.
694
680
 
@@ -745,7 +731,8 @@ class SGDClassifier(BaseTransformer):
745
731
  if False:
746
732
  self.fit(dataset)
747
733
  assert self._sklearn_object is not None
748
- return self._sklearn_object.labels_
734
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
735
+ return labels
749
736
  else:
750
737
  raise NotImplementedError
751
738
 
@@ -781,6 +768,7 @@ class SGDClassifier(BaseTransformer):
781
768
  output_cols = []
782
769
 
783
770
  # Make sure column names are valid snowflake identifiers.
771
+ assert output_cols is not None # Make MyPy happy
784
772
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
785
773
 
786
774
  return rv
@@ -791,11 +779,6 @@ class SGDClassifier(BaseTransformer):
791
779
  subproject=_SUBPROJECT,
792
780
  custom_tags=dict([("autogen", True)]),
793
781
  )
794
- @telemetry.add_stmt_params_to_df(
795
- project=_PROJECT,
796
- subproject=_SUBPROJECT,
797
- custom_tags=dict([("autogen", True)]),
798
- )
799
782
  def predict_proba(
800
783
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
801
784
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -838,11 +821,6 @@ class SGDClassifier(BaseTransformer):
838
821
  subproject=_SUBPROJECT,
839
822
  custom_tags=dict([("autogen", True)]),
840
823
  )
841
- @telemetry.add_stmt_params_to_df(
842
- project=_PROJECT,
843
- subproject=_SUBPROJECT,
844
- custom_tags=dict([("autogen", True)]),
845
- )
846
824
  def predict_log_proba(
847
825
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
848
826
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -881,16 +859,6 @@ class SGDClassifier(BaseTransformer):
881
859
  return output_df
882
860
 
883
861
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
884
- @telemetry.send_api_usage_telemetry(
885
- project=_PROJECT,
886
- subproject=_SUBPROJECT,
887
- custom_tags=dict([("autogen", True)]),
888
- )
889
- @telemetry.add_stmt_params_to_df(
890
- project=_PROJECT,
891
- subproject=_SUBPROJECT,
892
- custom_tags=dict([("autogen", True)]),
893
- )
894
862
  def decision_function(
895
863
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
896
864
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -993,11 +961,6 @@ class SGDClassifier(BaseTransformer):
993
961
  subproject=_SUBPROJECT,
994
962
  custom_tags=dict([("autogen", True)]),
995
963
  )
996
- @telemetry.add_stmt_params_to_df(
997
- project=_PROJECT,
998
- subproject=_SUBPROJECT,
999
- custom_tags=dict([("autogen", True)]),
1000
- )
1001
964
  def kneighbors(
1002
965
  self,
1003
966
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1057,18 +1020,28 @@ class SGDClassifier(BaseTransformer):
1057
1020
  # For classifier, the type of predict is the same as the type of label
1058
1021
  if self._sklearn_object._estimator_type == 'classifier':
1059
1022
  # label columns is the desired type for output
1060
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1023
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1061
1024
  # rename the output columns
1062
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1025
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1063
1026
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1064
1027
  ([] if self._drop_input_cols else inputs)
1065
1028
  + outputs)
1029
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1030
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1031
+ # Clusterer returns int64 cluster labels.
1032
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1033
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1034
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1035
+ ([] if self._drop_input_cols else inputs)
1036
+ + outputs)
1037
+
1066
1038
  # For regressor, the type of predict is float64
1067
1039
  elif self._sklearn_object._estimator_type == 'regressor':
1068
1040
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1069
1041
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1070
1042
  ([] if self._drop_input_cols else inputs)
1071
1043
  + outputs)
1044
+
1072
1045
  for prob_func in PROB_FUNCTIONS:
1073
1046
  if hasattr(self, prob_func):
1074
1047
  output_cols_prefix: str = f"{prob_func}_"