snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SGDClassifier(BaseTransformer):
|
57
58
|
r"""Linear classifiers (SVM, logistic regression, etc
|
58
59
|
For more details on this class, see [sklearn.linear_model.SGDClassifier]
|
@@ -60,6 +61,51 @@ class SGDClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
loss: {'hinge', 'log_loss', 'modified_huber', 'squared_hinge', 'perceptron', 'squared_error', 'huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'}, default='hinge'
|
64
110
|
The loss function to be used.
|
65
111
|
|
@@ -214,35 +260,6 @@ class SGDClassifier(BaseTransformer):
|
|
214
260
|
samples seen reaches `average`. So ``average=10`` will begin
|
215
261
|
averaging after seeing 10 samples.
|
216
262
|
Integer values must be in the range `[1, n_samples]`.
|
217
|
-
|
218
|
-
input_cols: Optional[Union[str, List[str]]]
|
219
|
-
A string or list of strings representing column names that contain features.
|
220
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
221
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
222
|
-
considered input columns.
|
223
|
-
|
224
|
-
label_cols: Optional[Union[str, List[str]]]
|
225
|
-
A string or list of strings representing column names that contain labels.
|
226
|
-
This is a required param for estimators, as there is no way to infer these
|
227
|
-
columns. If this parameter is not specified, then object is fitted without
|
228
|
-
labels (like a transformer).
|
229
|
-
|
230
|
-
output_cols: Optional[Union[str, List[str]]]
|
231
|
-
A string or list of strings representing column names that will store the
|
232
|
-
output of predict and transform operations. The length of output_cols must
|
233
|
-
match the expected number of output columns from the specific estimator or
|
234
|
-
transformer class used.
|
235
|
-
If this parameter is not specified, output column names are derived by
|
236
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
237
|
-
column names work for estimator's predict() method, but output_cols must
|
238
|
-
be set explicitly for transformers.
|
239
|
-
|
240
|
-
sample_weight_col: Optional[str]
|
241
|
-
A string representing the column name containing the sample weights.
|
242
|
-
This argument is only required when working with weighted datasets.
|
243
|
-
|
244
|
-
drop_input_cols: Optional[bool], default=False
|
245
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
246
263
|
"""
|
247
264
|
|
248
265
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -272,6 +289,7 @@ class SGDClassifier(BaseTransformer):
|
|
272
289
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
273
290
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
274
291
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
292
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
275
293
|
drop_input_cols: Optional[bool] = False,
|
276
294
|
sample_weight_col: Optional[str] = None,
|
277
295
|
) -> None:
|
@@ -280,9 +298,10 @@ class SGDClassifier(BaseTransformer):
|
|
280
298
|
self.set_input_cols(input_cols)
|
281
299
|
self.set_output_cols(output_cols)
|
282
300
|
self.set_label_cols(label_cols)
|
301
|
+
self.set_passthrough_cols(passthrough_cols)
|
283
302
|
self.set_drop_input_cols(drop_input_cols)
|
284
303
|
self.set_sample_weight_col(sample_weight_col)
|
285
|
-
deps = set(
|
304
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
286
305
|
|
287
306
|
self._deps = list(deps)
|
288
307
|
|
@@ -311,13 +330,14 @@ class SGDClassifier(BaseTransformer):
|
|
311
330
|
args=init_args,
|
312
331
|
klass=sklearn.linear_model.SGDClassifier
|
313
332
|
)
|
314
|
-
self._sklearn_object = sklearn.linear_model.SGDClassifier(
|
333
|
+
self._sklearn_object: Any = sklearn.linear_model.SGDClassifier(
|
315
334
|
**cleaned_up_init_args,
|
316
335
|
)
|
317
336
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
318
337
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
319
338
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
320
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
339
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
340
|
+
self._autogenerated = True
|
321
341
|
|
322
342
|
def _get_rand_id(self) -> str:
|
323
343
|
"""
|
@@ -328,24 +348,6 @@ class SGDClassifier(BaseTransformer):
|
|
328
348
|
"""
|
329
349
|
return str(uuid4()).replace("-", "_").upper()
|
330
350
|
|
331
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
332
|
-
"""
|
333
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
334
|
-
|
335
|
-
Args:
|
336
|
-
dataset: Input dataset.
|
337
|
-
"""
|
338
|
-
if not self.input_cols:
|
339
|
-
cols = [
|
340
|
-
c for c in dataset.columns
|
341
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
342
|
-
]
|
343
|
-
self.set_input_cols(input_cols=cols)
|
344
|
-
|
345
|
-
if not self.output_cols:
|
346
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
347
|
-
self.set_output_cols(output_cols=cols)
|
348
|
-
|
349
351
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SGDClassifier":
|
350
352
|
"""
|
351
353
|
Input columns setter.
|
@@ -391,54 +393,48 @@ class SGDClassifier(BaseTransformer):
|
|
391
393
|
self
|
392
394
|
"""
|
393
395
|
self._infer_input_output_cols(dataset)
|
394
|
-
if isinstance(dataset,
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
self.
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
409
|
-
|
396
|
+
if isinstance(dataset, DataFrame):
|
397
|
+
session = dataset._session
|
398
|
+
assert session is not None # keep mypy happy
|
399
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
400
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
401
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
402
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
403
|
+
|
404
|
+
# Specify input columns so column pruning will be enforced
|
405
|
+
selected_cols = self._get_active_columns()
|
406
|
+
if len(selected_cols) > 0:
|
407
|
+
dataset = dataset.select(selected_cols)
|
408
|
+
|
409
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
410
|
+
|
411
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
412
|
+
if SNOWML_SPROC_ENV in os.environ:
|
413
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
414
|
+
project=_PROJECT,
|
415
|
+
subproject=_SUBPROJECT,
|
416
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDClassifier.__class__.__name__),
|
417
|
+
api_calls=[Session.call],
|
418
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
419
|
+
)
|
420
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
421
|
+
pd_df.columns = dataset.columns
|
422
|
+
dataset = pd_df
|
423
|
+
|
424
|
+
model_trainer = ModelTrainerBuilder.build(
|
425
|
+
estimator=self._sklearn_object,
|
426
|
+
dataset=dataset,
|
427
|
+
input_cols=self.input_cols,
|
428
|
+
label_cols=self.label_cols,
|
429
|
+
sample_weight_col=self.sample_weight_col,
|
430
|
+
autogenerated=self._autogenerated,
|
431
|
+
subproject=_SUBPROJECT
|
432
|
+
)
|
433
|
+
self._sklearn_object = model_trainer.train()
|
410
434
|
self._is_fitted = True
|
411
435
|
self._get_model_signatures(dataset)
|
412
436
|
return self
|
413
437
|
|
414
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
415
|
-
session = dataset._session
|
416
|
-
assert session is not None # keep mypy happy
|
417
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
418
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
419
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
420
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
421
|
-
|
422
|
-
# Specify input columns so column pruning will be enforced
|
423
|
-
selected_cols = self._get_active_columns()
|
424
|
-
if len(selected_cols) > 0:
|
425
|
-
dataset = dataset.select(selected_cols)
|
426
|
-
|
427
|
-
estimator = self._sklearn_object
|
428
|
-
assert estimator is not None # Keep mypy happy
|
429
|
-
|
430
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
431
|
-
|
432
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
433
|
-
dataset,
|
434
|
-
session,
|
435
|
-
estimator,
|
436
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
437
|
-
self.input_cols,
|
438
|
-
self.label_cols,
|
439
|
-
self.sample_weight_col,
|
440
|
-
)
|
441
|
-
|
442
438
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
443
439
|
if self._drop_input_cols:
|
444
440
|
return []
|
@@ -626,11 +622,6 @@ class SGDClassifier(BaseTransformer):
|
|
626
622
|
subproject=_SUBPROJECT,
|
627
623
|
custom_tags=dict([("autogen", True)]),
|
628
624
|
)
|
629
|
-
@telemetry.add_stmt_params_to_df(
|
630
|
-
project=_PROJECT,
|
631
|
-
subproject=_SUBPROJECT,
|
632
|
-
custom_tags=dict([("autogen", True)]),
|
633
|
-
)
|
634
625
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
635
626
|
"""Predict class labels for samples in X
|
636
627
|
For more details on this function, see [sklearn.linear_model.SGDClassifier.predict]
|
@@ -684,11 +675,6 @@ class SGDClassifier(BaseTransformer):
|
|
684
675
|
subproject=_SUBPROJECT,
|
685
676
|
custom_tags=dict([("autogen", True)]),
|
686
677
|
)
|
687
|
-
@telemetry.add_stmt_params_to_df(
|
688
|
-
project=_PROJECT,
|
689
|
-
subproject=_SUBPROJECT,
|
690
|
-
custom_tags=dict([("autogen", True)]),
|
691
|
-
)
|
692
678
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
693
679
|
"""Method not supported for this class.
|
694
680
|
|
@@ -745,7 +731,8 @@ class SGDClassifier(BaseTransformer):
|
|
745
731
|
if False:
|
746
732
|
self.fit(dataset)
|
747
733
|
assert self._sklearn_object is not None
|
748
|
-
|
734
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
735
|
+
return labels
|
749
736
|
else:
|
750
737
|
raise NotImplementedError
|
751
738
|
|
@@ -781,6 +768,7 @@ class SGDClassifier(BaseTransformer):
|
|
781
768
|
output_cols = []
|
782
769
|
|
783
770
|
# Make sure column names are valid snowflake identifiers.
|
771
|
+
assert output_cols is not None # Make MyPy happy
|
784
772
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
785
773
|
|
786
774
|
return rv
|
@@ -791,11 +779,6 @@ class SGDClassifier(BaseTransformer):
|
|
791
779
|
subproject=_SUBPROJECT,
|
792
780
|
custom_tags=dict([("autogen", True)]),
|
793
781
|
)
|
794
|
-
@telemetry.add_stmt_params_to_df(
|
795
|
-
project=_PROJECT,
|
796
|
-
subproject=_SUBPROJECT,
|
797
|
-
custom_tags=dict([("autogen", True)]),
|
798
|
-
)
|
799
782
|
def predict_proba(
|
800
783
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
801
784
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -838,11 +821,6 @@ class SGDClassifier(BaseTransformer):
|
|
838
821
|
subproject=_SUBPROJECT,
|
839
822
|
custom_tags=dict([("autogen", True)]),
|
840
823
|
)
|
841
|
-
@telemetry.add_stmt_params_to_df(
|
842
|
-
project=_PROJECT,
|
843
|
-
subproject=_SUBPROJECT,
|
844
|
-
custom_tags=dict([("autogen", True)]),
|
845
|
-
)
|
846
824
|
def predict_log_proba(
|
847
825
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
848
826
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -881,16 +859,6 @@ class SGDClassifier(BaseTransformer):
|
|
881
859
|
return output_df
|
882
860
|
|
883
861
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
884
|
-
@telemetry.send_api_usage_telemetry(
|
885
|
-
project=_PROJECT,
|
886
|
-
subproject=_SUBPROJECT,
|
887
|
-
custom_tags=dict([("autogen", True)]),
|
888
|
-
)
|
889
|
-
@telemetry.add_stmt_params_to_df(
|
890
|
-
project=_PROJECT,
|
891
|
-
subproject=_SUBPROJECT,
|
892
|
-
custom_tags=dict([("autogen", True)]),
|
893
|
-
)
|
894
862
|
def decision_function(
|
895
863
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
896
864
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -993,11 +961,6 @@ class SGDClassifier(BaseTransformer):
|
|
993
961
|
subproject=_SUBPROJECT,
|
994
962
|
custom_tags=dict([("autogen", True)]),
|
995
963
|
)
|
996
|
-
@telemetry.add_stmt_params_to_df(
|
997
|
-
project=_PROJECT,
|
998
|
-
subproject=_SUBPROJECT,
|
999
|
-
custom_tags=dict([("autogen", True)]),
|
1000
|
-
)
|
1001
964
|
def kneighbors(
|
1002
965
|
self,
|
1003
966
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1057,18 +1020,28 @@ class SGDClassifier(BaseTransformer):
|
|
1057
1020
|
# For classifier, the type of predict is the same as the type of label
|
1058
1021
|
if self._sklearn_object._estimator_type == 'classifier':
|
1059
1022
|
# label columns is the desired type for output
|
1060
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1023
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1061
1024
|
# rename the output columns
|
1062
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1025
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1063
1026
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1064
1027
|
([] if self._drop_input_cols else inputs)
|
1065
1028
|
+ outputs)
|
1029
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1030
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1031
|
+
# Clusterer returns int64 cluster labels.
|
1032
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1033
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1034
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1035
|
+
([] if self._drop_input_cols else inputs)
|
1036
|
+
+ outputs)
|
1037
|
+
|
1066
1038
|
# For regressor, the type of predict is float64
|
1067
1039
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1068
1040
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1069
1041
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1070
1042
|
([] if self._drop_input_cols else inputs)
|
1071
1043
|
+ outputs)
|
1044
|
+
|
1072
1045
|
for prob_func in PROB_FUNCTIONS:
|
1073
1046
|
if hasattr(self, prob_func):
|
1074
1047
|
output_cols_prefix: str = f"{prob_func}_"
|