snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.gaussian_process".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GaussianProcessRegressor(BaseTransformer):
57
58
  r"""Gaussian process regression (GPR)
58
59
  For more details on this class, see [sklearn.gaussian_process.GaussianProcessRegressor]
@@ -60,6 +61,51 @@ class GaussianProcessRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  kernel: kernel instance, default=None
64
110
  The kernel specifying the covariance function of the GP. If None is
65
111
  passed, the kernel ``ConstantKernel(1.0, constant_value_bounds="fixed")
@@ -134,35 +180,6 @@ class GaussianProcessRegressor(BaseTransformer):
134
180
  Determines random number generation used to initialize the centers.
135
181
  Pass an int for reproducible results across multiple function calls.
136
182
  See :term:`Glossary <random_state>`.
137
-
138
- input_cols: Optional[Union[str, List[str]]]
139
- A string or list of strings representing column names that contain features.
140
- If this parameter is not specified, all columns in the input DataFrame except
141
- the columns specified by label_cols and sample_weight_col parameters are
142
- considered input columns.
143
-
144
- label_cols: Optional[Union[str, List[str]]]
145
- A string or list of strings representing column names that contain labels.
146
- This is a required param for estimators, as there is no way to infer these
147
- columns. If this parameter is not specified, then object is fitted without
148
- labels (like a transformer).
149
-
150
- output_cols: Optional[Union[str, List[str]]]
151
- A string or list of strings representing column names that will store the
152
- output of predict and transform operations. The length of output_cols must
153
- match the expected number of output columns from the specific estimator or
154
- transformer class used.
155
- If this parameter is not specified, output column names are derived by
156
- adding an OUTPUT_ prefix to the label column names. These inferred output
157
- column names work for estimator's predict() method, but output_cols must
158
- be set explicitly for transformers.
159
-
160
- sample_weight_col: Optional[str]
161
- A string representing the column name containing the sample weights.
162
- This argument is only required when working with weighted datasets.
163
-
164
- drop_input_cols: Optional[bool], default=False
165
- If set, the response of predict(), transform() methods will not contain input columns.
166
183
  """
167
184
 
168
185
  def __init__( # type: ignore[no-untyped-def]
@@ -179,6 +196,7 @@ class GaussianProcessRegressor(BaseTransformer):
179
196
  input_cols: Optional[Union[str, Iterable[str]]] = None,
180
197
  output_cols: Optional[Union[str, Iterable[str]]] = None,
181
198
  label_cols: Optional[Union[str, Iterable[str]]] = None,
199
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
182
200
  drop_input_cols: Optional[bool] = False,
183
201
  sample_weight_col: Optional[str] = None,
184
202
  ) -> None:
@@ -187,9 +205,10 @@ class GaussianProcessRegressor(BaseTransformer):
187
205
  self.set_input_cols(input_cols)
188
206
  self.set_output_cols(output_cols)
189
207
  self.set_label_cols(label_cols)
208
+ self.set_passthrough_cols(passthrough_cols)
190
209
  self.set_drop_input_cols(drop_input_cols)
191
210
  self.set_sample_weight_col(sample_weight_col)
192
- deps = set(SklearnWrapperProvider().dependencies)
211
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
193
212
 
194
213
  self._deps = list(deps)
195
214
 
@@ -205,13 +224,14 @@ class GaussianProcessRegressor(BaseTransformer):
205
224
  args=init_args,
206
225
  klass=sklearn.gaussian_process.GaussianProcessRegressor
207
226
  )
208
- self._sklearn_object = sklearn.gaussian_process.GaussianProcessRegressor(
227
+ self._sklearn_object: Any = sklearn.gaussian_process.GaussianProcessRegressor(
209
228
  **cleaned_up_init_args,
210
229
  )
211
230
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
212
231
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
213
232
  self._snowpark_cols: Optional[List[str]] = self.input_cols
214
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
233
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
234
+ self._autogenerated = True
215
235
 
216
236
  def _get_rand_id(self) -> str:
217
237
  """
@@ -222,24 +242,6 @@ class GaussianProcessRegressor(BaseTransformer):
222
242
  """
223
243
  return str(uuid4()).replace("-", "_").upper()
224
244
 
225
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
226
- """
227
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
228
-
229
- Args:
230
- dataset: Input dataset.
231
- """
232
- if not self.input_cols:
233
- cols = [
234
- c for c in dataset.columns
235
- if c not in self.get_label_cols() and c != self.sample_weight_col
236
- ]
237
- self.set_input_cols(input_cols=cols)
238
-
239
- if not self.output_cols:
240
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
241
- self.set_output_cols(output_cols=cols)
242
-
243
245
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GaussianProcessRegressor":
244
246
  """
245
247
  Input columns setter.
@@ -285,54 +287,48 @@ class GaussianProcessRegressor(BaseTransformer):
285
287
  self
286
288
  """
287
289
  self._infer_input_output_cols(dataset)
288
- if isinstance(dataset, pd.DataFrame):
289
- assert self._sklearn_object is not None # keep mypy happy
290
- self._sklearn_object = self._handlers.fit_pandas(
291
- dataset,
292
- self._sklearn_object,
293
- self.input_cols,
294
- self.label_cols,
295
- self.sample_weight_col
296
- )
297
- elif isinstance(dataset, DataFrame):
298
- self._fit_snowpark(dataset)
299
- else:
300
- raise TypeError(
301
- f"Unexpected dataset type: {type(dataset)}."
302
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
303
- )
290
+ if isinstance(dataset, DataFrame):
291
+ session = dataset._session
292
+ assert session is not None # keep mypy happy
293
+ # Validate that key package version in user workspace are supported in snowflake conda channel
294
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
295
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
296
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
297
+
298
+ # Specify input columns so column pruning will be enforced
299
+ selected_cols = self._get_active_columns()
300
+ if len(selected_cols) > 0:
301
+ dataset = dataset.select(selected_cols)
302
+
303
+ self._snowpark_cols = dataset.select(self.input_cols).columns
304
+
305
+ # If we are already in a stored procedure, no need to kick off another one.
306
+ if SNOWML_SPROC_ENV in os.environ:
307
+ statement_params = telemetry.get_function_usage_statement_params(
308
+ project=_PROJECT,
309
+ subproject=_SUBPROJECT,
310
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianProcessRegressor.__class__.__name__),
311
+ api_calls=[Session.call],
312
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
313
+ )
314
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
315
+ pd_df.columns = dataset.columns
316
+ dataset = pd_df
317
+
318
+ model_trainer = ModelTrainerBuilder.build(
319
+ estimator=self._sklearn_object,
320
+ dataset=dataset,
321
+ input_cols=self.input_cols,
322
+ label_cols=self.label_cols,
323
+ sample_weight_col=self.sample_weight_col,
324
+ autogenerated=self._autogenerated,
325
+ subproject=_SUBPROJECT
326
+ )
327
+ self._sklearn_object = model_trainer.train()
304
328
  self._is_fitted = True
305
329
  self._get_model_signatures(dataset)
306
330
  return self
307
331
 
308
- def _fit_snowpark(self, dataset: DataFrame) -> None:
309
- session = dataset._session
310
- assert session is not None # keep mypy happy
311
- # Validate that key package version in user workspace are supported in snowflake conda channel
312
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
313
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
314
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
315
-
316
- # Specify input columns so column pruning will be enforced
317
- selected_cols = self._get_active_columns()
318
- if len(selected_cols) > 0:
319
- dataset = dataset.select(selected_cols)
320
-
321
- estimator = self._sklearn_object
322
- assert estimator is not None # Keep mypy happy
323
-
324
- self._snowpark_cols = dataset.select(self.input_cols).columns
325
-
326
- self._sklearn_object = self._handlers.fit_snowpark(
327
- dataset,
328
- session,
329
- estimator,
330
- ["snowflake-snowpark-python"] + self._get_dependencies(),
331
- self.input_cols,
332
- self.label_cols,
333
- self.sample_weight_col,
334
- )
335
-
336
332
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
337
333
  if self._drop_input_cols:
338
334
  return []
@@ -520,11 +516,6 @@ class GaussianProcessRegressor(BaseTransformer):
520
516
  subproject=_SUBPROJECT,
521
517
  custom_tags=dict([("autogen", True)]),
522
518
  )
523
- @telemetry.add_stmt_params_to_df(
524
- project=_PROJECT,
525
- subproject=_SUBPROJECT,
526
- custom_tags=dict([("autogen", True)]),
527
- )
528
519
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
529
520
  """Predict using the Gaussian process regression model
530
521
  For more details on this function, see [sklearn.gaussian_process.GaussianProcessRegressor.predict]
@@ -578,11 +569,6 @@ class GaussianProcessRegressor(BaseTransformer):
578
569
  subproject=_SUBPROJECT,
579
570
  custom_tags=dict([("autogen", True)]),
580
571
  )
581
- @telemetry.add_stmt_params_to_df(
582
- project=_PROJECT,
583
- subproject=_SUBPROJECT,
584
- custom_tags=dict([("autogen", True)]),
585
- )
586
572
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
587
573
  """Method not supported for this class.
588
574
 
@@ -639,7 +625,8 @@ class GaussianProcessRegressor(BaseTransformer):
639
625
  if False:
640
626
  self.fit(dataset)
641
627
  assert self._sklearn_object is not None
642
- return self._sklearn_object.labels_
628
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
629
+ return labels
643
630
  else:
644
631
  raise NotImplementedError
645
632
 
@@ -675,6 +662,7 @@ class GaussianProcessRegressor(BaseTransformer):
675
662
  output_cols = []
676
663
 
677
664
  # Make sure column names are valid snowflake identifiers.
665
+ assert output_cols is not None # Make MyPy happy
678
666
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
679
667
 
680
668
  return rv
@@ -685,11 +673,6 @@ class GaussianProcessRegressor(BaseTransformer):
685
673
  subproject=_SUBPROJECT,
686
674
  custom_tags=dict([("autogen", True)]),
687
675
  )
688
- @telemetry.add_stmt_params_to_df(
689
- project=_PROJECT,
690
- subproject=_SUBPROJECT,
691
- custom_tags=dict([("autogen", True)]),
692
- )
693
676
  def predict_proba(
694
677
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
695
678
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -730,11 +713,6 @@ class GaussianProcessRegressor(BaseTransformer):
730
713
  subproject=_SUBPROJECT,
731
714
  custom_tags=dict([("autogen", True)]),
732
715
  )
733
- @telemetry.add_stmt_params_to_df(
734
- project=_PROJECT,
735
- subproject=_SUBPROJECT,
736
- custom_tags=dict([("autogen", True)]),
737
- )
738
716
  def predict_log_proba(
739
717
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
740
718
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -771,16 +749,6 @@ class GaussianProcessRegressor(BaseTransformer):
771
749
  return output_df
772
750
 
773
751
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
774
- @telemetry.send_api_usage_telemetry(
775
- project=_PROJECT,
776
- subproject=_SUBPROJECT,
777
- custom_tags=dict([("autogen", True)]),
778
- )
779
- @telemetry.add_stmt_params_to_df(
780
- project=_PROJECT,
781
- subproject=_SUBPROJECT,
782
- custom_tags=dict([("autogen", True)]),
783
- )
784
752
  def decision_function(
785
753
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
786
754
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -881,11 +849,6 @@ class GaussianProcessRegressor(BaseTransformer):
881
849
  subproject=_SUBPROJECT,
882
850
  custom_tags=dict([("autogen", True)]),
883
851
  )
884
- @telemetry.add_stmt_params_to_df(
885
- project=_PROJECT,
886
- subproject=_SUBPROJECT,
887
- custom_tags=dict([("autogen", True)]),
888
- )
889
852
  def kneighbors(
890
853
  self,
891
854
  dataset: Union[DataFrame, pd.DataFrame],
@@ -945,18 +908,28 @@ class GaussianProcessRegressor(BaseTransformer):
945
908
  # For classifier, the type of predict is the same as the type of label
946
909
  if self._sklearn_object._estimator_type == 'classifier':
947
910
  # label columns is the desired type for output
948
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
911
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
949
912
  # rename the output columns
950
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
913
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
951
914
  self._model_signature_dict["predict"] = ModelSignature(inputs,
952
915
  ([] if self._drop_input_cols else inputs)
953
916
  + outputs)
917
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
918
+ # For outlier models, returns -1 for outliers and 1 for inliers.
919
+ # Clusterer returns int64 cluster labels.
920
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
921
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
922
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
923
+ ([] if self._drop_input_cols else inputs)
924
+ + outputs)
925
+
954
926
  # For regressor, the type of predict is float64
955
927
  elif self._sklearn_object._estimator_type == 'regressor':
956
928
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
957
929
  self._model_signature_dict["predict"] = ModelSignature(inputs,
958
930
  ([] if self._drop_input_cols else inputs)
959
931
  + outputs)
932
+
960
933
  for prob_func in PROB_FUNCTIONS:
961
934
  if hasattr(self, prob_func):
962
935
  output_cols_prefix: str = f"{prob_func}_"