snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -1,11 +1,11 @@
1
- from typing import Dict, Iterable, List, Optional, Set, Union
1
+ from typing import Any, Dict, Iterable, List, Optional, Set, Union
2
2
  from uuid import uuid4
3
3
 
4
+ import cloudpickle as cp
4
5
  import numpy as np
5
6
  import pandas as pd
6
7
  import sklearn
7
8
  import sklearn.model_selection
8
- from sklearn.model_selection import ParameterSampler
9
9
  from sklearn.utils.metaestimators import available_if
10
10
 
11
11
  from snowflake.ml._internal import telemetry
@@ -22,13 +22,12 @@ from snowflake.ml.model.model_signature import (
22
22
  from snowflake.ml.modeling._internal.estimator_protocols import CVHandlers
23
23
  from snowflake.ml.modeling._internal.estimator_utils import (
24
24
  gather_dependencies,
25
- is_single_node,
26
25
  original_estimator_has_callable,
27
26
  transform_snowml_obj_to_sklearn_obj,
28
27
  validate_sklearn_args,
29
28
  )
29
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
30
  from snowflake.ml.modeling._internal.snowpark_handlers import (
31
- SklearnModelSelectionWrapperProvider,
32
31
  SnowparkHandlers as HandlersImpl,
33
32
  )
34
33
  from snowflake.ml.modeling.framework.base import BaseTransformer
@@ -50,13 +49,13 @@ class RandomizedSearchCV(BaseTransformer):
50
49
 
51
50
  Parameters
52
51
  ----------
53
- estimator : estimator object
52
+ estimator: estimator object
54
53
  An object of that type is instantiated for each grid point.
55
54
  This is assumed to implement the scikit-learn estimator interface.
56
55
  Either estimator needs to provide a ``score`` function,
57
56
  or ``scoring`` must be passed.
58
57
 
59
- param_distributions : dict or list of dicts
58
+ param_distributions: dict or list of dicts
60
59
  Dictionary with parameters names (`str`) as keys and distributions
61
60
  or lists of parameters to try. Distributions must provide a ``rvs``
62
61
  method for sampling (such as those from scipy.stats.distributions).
@@ -64,11 +63,46 @@ class RandomizedSearchCV(BaseTransformer):
64
63
  If a list of dicts is given, first a dict is sampled uniformly, and
65
64
  then a parameter is sampled using that dict as above.
66
65
 
67
- n_iter : int, default=10
66
+ input_cols: Optional[Union[str, List[str]]]
67
+ A string or list of strings representing column names that contain features.
68
+ If this parameter is not specified, all columns in the input DataFrame except
69
+ the columns specified by label_cols and sample-weight_col parameters are
70
+ considered input columns.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ This is a required param for estimators, as there is no way to infer these
75
+ columns. If this parameter is not specified, then object is fitted without
76
+ labels(Like a transformer).
77
+
78
+ output_cols: Optional[Union[str, List[str]]]
79
+ A string or list of strings representing column names that will store the
80
+ output of predict and transform operations. The length of output_cols mus
81
+ match the expected number of output columns from the specific estimator or
82
+ transformer class used.
83
+ If this parameter is not specified, output column names are derived by
84
+ adding an OUTPUT_ prefix to the label column names. These inferred output
85
+ column names work for estimator's predict() method, but output_cols must
86
+ be set explicitly for transformers.
87
+
88
+ passthrough_cols: A string or a list of strings indicating column names to be excluded from any
89
+ operations (such as train, transform, or inference). These specified column(s)
90
+ will remain untouched throughout the process. This option is helpful in scenarios
91
+ requiring automatic input_cols inference, but need to avoid using specific
92
+ columns, like index columns, during training or inference.
93
+
94
+ sample_weight_col: Optional[str]
95
+ A string representing the column name containing the examples’ weights.
96
+ This argument is only required when working with weighted datasets.
97
+
98
+ drop_input_cols: Optional[bool], default=False
99
+ If set, the response of predict(), transform() methods will not contain input columns.
100
+
101
+ n_iter: int, default=10
68
102
  Number of parameter settings that are sampled. n_iter trades
69
103
  off runtime vs quality of the solution.
70
104
 
71
- scoring : str, callable, list, tuple or dict, default=None
105
+ scoring: str, callable, list, tuple or dict, default=None
72
106
  Strategy to evaluate the performance of the cross-validated model on
73
107
  the test set.
74
108
 
@@ -88,13 +122,13 @@ class RandomizedSearchCV(BaseTransformer):
88
122
 
89
123
  If None, the estimator's score method is used.
90
124
 
91
- n_jobs : int, default=None
125
+ n_jobs: int, default=None
92
126
  Number of jobs to run in parallel.
93
127
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
94
128
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
95
129
  for more details.
96
130
 
97
- refit : bool, str, or callable, default=True
131
+ refit: bool, str, or callable, default=True
98
132
  Refit an estimator using the best found parameters on the whole
99
133
  dataset.
100
134
 
@@ -121,7 +155,7 @@ class RandomizedSearchCV(BaseTransformer):
121
155
  See ``scoring`` parameter to know more about multiple metric
122
156
  evaluation.
123
157
 
124
- cv : int, cross-validation generator or an iterable, default=None
158
+ cv: int, cross-validation generator or an iterable, default=None
125
159
  Determines the cross-validation splitting strategy.
126
160
  Possible inputs for cv are:
127
161
 
@@ -138,7 +172,7 @@ class RandomizedSearchCV(BaseTransformer):
138
172
  Refer :ref:`User Guide <cross_validation>` for the various
139
173
  cross-validation strategies that can be used here.
140
174
 
141
- verbose : int
175
+ verbose: int
142
176
  Controls the verbosity: the higher, the more messages.
143
177
 
144
178
  - >1 : the computation time for each fold and parameter candidate is
@@ -147,7 +181,7 @@ class RandomizedSearchCV(BaseTransformer):
147
181
  - >3 : the fold and candidate parameter indexes are also displayed
148
182
  together with the starting time of the computation.
149
183
 
150
- pre_dispatch : int, or str, default='2*n_jobs'
184
+ pre_dispatch: int, or str, default='2*n_jobs'
151
185
  Controls the number of jobs that get dispatched during parallel
152
186
  execution. Reducing this number can be useful to avoid an
153
187
  explosion of memory consumption when more jobs get dispatched
@@ -164,20 +198,20 @@ class RandomizedSearchCV(BaseTransformer):
164
198
  - A str, giving an expression as a function of n_jobs,
165
199
  as in '2*n_jobs'
166
200
 
167
- random_state : int, RandomState instance or None, default=None
201
+ random_state: int, RandomState instance or None, default=None
168
202
  Pseudo random number generator state used for random uniform sampling
169
203
  from lists of possible values instead of scipy.stats distributions.
170
204
  Pass an int for reproducible output across multiple
171
205
  function calls.
172
206
  See :term:`Glossary <random_state>`.
173
207
 
174
- error_score : 'raise' or numeric, default=np.nan
208
+ error_score: 'raise' or numeric, default=np.nan
175
209
  Value to assign to the score if an error occurs in estimator fitting.
176
210
  If set to 'raise', the error is raised. If a numeric value is given,
177
211
  FitFailedWarning is raised. This parameter does not affect the refit
178
212
  step, which will always raise the error.
179
213
 
180
- return_train_score : bool, default=False
214
+ return_train_score: bool, default=False
181
215
  If ``False``, the ``cv_results_`` attribute will not include training
182
216
  scores.
183
217
  Computing training scores is used to get insights on how different
@@ -185,35 +219,6 @@ class RandomizedSearchCV(BaseTransformer):
185
219
  However computing the scores on the training set can be computationally
186
220
  expensive and is not strictly required to select the parameters that
187
221
  yield the best generalization performance.
188
-
189
- input_cols : Optional[Union[str, List[str]]]
190
- A string or list of strings representing column names that contain features.
191
- If this parameter is not specified, all columns in the input DataFrame except
192
- the columns specified by label_cols and sample-weight_col parameters are
193
- considered input columns.
194
-
195
- label_cols : Optional[Union[str, List[str]]]
196
- A string or list of strings representing column names that contain labels.
197
- This is a required param for estimators, as there is no way to infer these
198
- columns. If this parameter is not specified, then object is fitted without
199
- labels(Like a transformer).
200
-
201
- output_cols: Optional[Union[str, List[str]]]
202
- A string or list of strings representing column names that will store the
203
- output of predict and transform operations. The length of output_cols mus
204
- match the expected number of output columns from the specific estimator or
205
- transformer class used.
206
- If this parameter is not specified, output column names are derived by
207
- adding an OUTPUT_ prefix to the label column names. These inferred output
208
- column names work for estimator's predict() method, but output_cols must
209
- be set explicitly for transformers.
210
-
211
- sample_weight_col: Optional[str]
212
- A string representing the column name containing the examples’ weights.
213
- This argument is only required when working with weighted datasets.
214
-
215
- drop_input_cols: Optional[bool], default=False
216
- If set, the response of predict(), transform() methods will not contain input columns.
217
222
  """
218
223
  _ENABLE_DISTRIBUTED = True
219
224
 
@@ -235,11 +240,16 @@ class RandomizedSearchCV(BaseTransformer):
235
240
  input_cols: Optional[Union[str, Iterable[str]]] = None,
236
241
  output_cols: Optional[Union[str, Iterable[str]]] = None,
237
242
  label_cols: Optional[Union[str, Iterable[str]]] = None,
243
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
238
244
  drop_input_cols: Optional[bool] = False,
239
245
  sample_weight_col: Optional[str] = None,
240
246
  ) -> None:
241
247
  super().__init__()
242
- deps: Set[str] = set(SklearnModelSelectionWrapperProvider().dependencies)
248
+ deps: Set[str] = {
249
+ f"numpy=={np.__version__}",
250
+ f"scikit-learn=={sklearn.__version__}",
251
+ f"cloudpickle=={cp.__version__}",
252
+ }
243
253
  deps = deps | gather_dependencies(estimator)
244
254
  self._deps = list(deps)
245
255
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -258,7 +268,7 @@ class RandomizedSearchCV(BaseTransformer):
258
268
  "return_train_score": (return_train_score, False, False),
259
269
  }
260
270
  cleaned_up_init_args = validate_sklearn_args(args=init_args, klass=sklearn.model_selection.RandomizedSearchCV)
261
- self._sklearn_object = sklearn.model_selection.RandomizedSearchCV(
271
+ self._sklearn_object: Any = sklearn.model_selection.RandomizedSearchCV(
262
272
  **cleaned_up_init_args,
263
273
  )
264
274
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
@@ -267,10 +277,10 @@ class RandomizedSearchCV(BaseTransformer):
267
277
  self.set_label_cols(label_cols)
268
278
  self.set_drop_input_cols(drop_input_cols)
269
279
  self.set_sample_weight_col(sample_weight_col)
280
+ self.set_passthrough_cols(passthrough_cols)
270
281
  self._handlers: CVHandlers = HandlersImpl(
271
282
  class_name=self.__class__.__name__,
272
283
  subproject=_SUBPROJECT,
273
- wrapper_provider=SklearnModelSelectionWrapperProvider(),
274
284
  )
275
285
 
276
286
  def _get_rand_id(self) -> str:
@@ -282,21 +292,6 @@ class RandomizedSearchCV(BaseTransformer):
282
292
  """
283
293
  return str(uuid4()).replace("-", "_").upper()
284
294
 
285
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
286
- """
287
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
288
-
289
- Args:
290
- dataset: Input dataset.
291
- """
292
- if not self.input_cols:
293
- cols = [c for c in dataset.columns if c not in self.get_label_cols() and c != self.sample_weight_col]
294
- self.set_input_cols(input_cols=cols)
295
-
296
- if not self.output_cols:
297
- cols = [identifier.concat_names(ids=["OUTPUT_", c]) for c in self.label_cols]
298
- self.set_output_cols(output_cols=cols)
299
-
300
295
  def _get_active_columns(self) -> List[str]:
301
296
  """ "Get the list of columns that are relevant to the transformer."""
302
297
  selected_cols = (
@@ -313,10 +308,6 @@ class RandomizedSearchCV(BaseTransformer):
313
308
  For more details on this function, see [sklearn.model_selection.RandomizedSearchCV.fit]
314
309
  (https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html#sklearn.model_selection.RandomizedSearchCV.fit)
315
310
 
316
-
317
- Raises:
318
- TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
319
-
320
311
  Args:
321
312
  dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
322
313
  Snowpark or Pandas DataFrame.
@@ -325,74 +316,37 @@ class RandomizedSearchCV(BaseTransformer):
325
316
  self
326
317
  """
327
318
  self._infer_input_output_cols(dataset)
328
- if isinstance(dataset, pd.DataFrame):
329
- self._estimator = self._handlers.fit_pandas(
330
- dataset, self._sklearn_object, self.input_cols, self.label_cols, self.sample_weight_col
331
- )
332
- elif isinstance(dataset, DataFrame):
333
- self._fit_snowpark(dataset)
334
- else:
335
- raise TypeError(
336
- f"Unexpected dataset type: {type(dataset)}."
337
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
319
+ if hasattr(self._sklearn_object, "n_jobs") and self._sklearn_object.n_jobs is None:
320
+ self._sklearn_object.n_jobs = -1
321
+ if isinstance(dataset, DataFrame):
322
+ session = dataset._session
323
+ assert session is not None # keep mypy happy
324
+ # Validate that key package version in user workspace are supported in snowflake conda channel
325
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
326
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
327
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
338
328
  )
339
- self._is_fitted = True
340
- self._get_model_signatures(dataset)
341
- return self
342
329
 
343
- def _fit_snowpark(self, dataset: DataFrame) -> None:
344
- session = dataset._session
345
- assert session is not None # keep mypy happy
346
- # Validate that key package version in user workspace are supported in snowflake conda channel
347
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
348
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
349
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
350
- )
330
+ # Specify input columns so column pruning will be enforced
331
+ selected_cols = self._get_active_columns()
332
+ if len(selected_cols) > 0:
333
+ dataset = dataset.select(selected_cols)
351
334
 
352
- selected_cols = self._get_active_columns()
353
- if len(selected_cols) > 0:
354
- dataset = dataset.select(selected_cols)
335
+ self._snowpark_cols = dataset.select(self.input_cols).columns
355
336
 
356
- assert self._sklearn_object is not None
357
- is_distributed = not is_single_node(session) and self._ENABLE_DISTRIBUTED is True
358
- if is_distributed:
359
- # Set the default value of the `n_jobs` attribute for the estimator.
360
- # If minus one is set, it will not be abided by in the UDTF, so we set that to the default value as well.
361
- if hasattr(self._sklearn_object.estimator, "n_jobs") and self._sklearn_object.estimator.n_jobs in [
362
- None,
363
- -1,
364
- ]:
365
- self._sklearn_object.estimator.n_jobs = DEFAULT_UDTF_NJOBS
366
- self._sklearn_object = self._handlers.fit_search_snowpark(
367
- param_grid=ParameterSampler(
368
- self._sklearn_object.param_distributions,
369
- n_iter=self._sklearn_object.n_iter,
370
- random_state=self._sklearn_object.random_state,
371
- ),
372
- dataset=dataset,
373
- session=session,
374
- estimator=self._sklearn_object,
375
- dependencies=self._get_dependencies(),
376
- udf_imports=["sklearn"],
377
- input_cols=self.input_cols,
378
- label_cols=self.label_cols,
379
- sample_weight_col=self.sample_weight_col,
380
- )
381
- else:
382
- # Fall back with stored procedure implementation
383
- # set the parallel factor to default to minus one, to fully accelerate the cores in single node
384
- if self._sklearn_object.n_jobs is None:
385
- self._sklearn_object.n_jobs = -1
386
-
387
- self._sklearn_object = self._handlers.fit_snowpark(
388
- dataset,
389
- session,
390
- self._sklearn_object,
391
- ["snowflake-snowpark-python"] + self._get_dependencies(),
392
- self.input_cols,
393
- self.label_cols,
394
- self.sample_weight_col,
395
- )
337
+ model_trainer = ModelTrainerBuilder.build(
338
+ estimator=self._sklearn_object,
339
+ dataset=dataset,
340
+ input_cols=self.input_cols,
341
+ label_cols=self.label_cols,
342
+ sample_weight_col=self.sample_weight_col,
343
+ autogenerated=False,
344
+ subproject=_SUBPROJECT,
345
+ )
346
+ self._sklearn_object = model_trainer.train()
347
+ self._is_fitted = True
348
+ self._get_model_signatures(dataset)
349
+ return self
396
350
 
397
351
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
398
352
  if self._drop_input_cols:
@@ -449,7 +403,7 @@ class RandomizedSearchCV(BaseTransformer):
449
403
  # input cols need to match unquoted / quoted
450
404
  input_cols = self.input_cols
451
405
  unquoted_input_cols = identifier.get_unescaped_names(self.input_cols)
452
- quoted_input_cols = identifier.get_escaped_names(unquoted_input_cols)
406
+ quoted_input_cols = identifier.get_inferred_names(unquoted_input_cols)
453
407
 
454
408
  estimator = self._sklearn_object
455
409
 
@@ -546,10 +500,6 @@ class RandomizedSearchCV(BaseTransformer):
546
500
  project=_PROJECT,
547
501
  subproject=_SUBPROJECT,
548
502
  )
549
- @telemetry.add_stmt_params_to_df(
550
- project=_PROJECT,
551
- subproject=_SUBPROJECT,
552
- )
553
503
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
554
504
  """Call predict on the estimator with the best found parameters
555
505
  For more details on this function, see [sklearn.model_selection.RandomizedSearchCV.predict]
@@ -591,10 +541,6 @@ class RandomizedSearchCV(BaseTransformer):
591
541
  project=_PROJECT,
592
542
  subproject=_SUBPROJECT,
593
543
  )
594
- @telemetry.add_stmt_params_to_df(
595
- project=_PROJECT,
596
- subproject=_SUBPROJECT,
597
- )
598
544
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
599
545
  """Call transform on the estimator with the best found parameters
600
546
  For more details on this function, see [sklearn.model_selection.RandomizedSearchCV.transform]
@@ -658,10 +604,6 @@ class RandomizedSearchCV(BaseTransformer):
658
604
  project=_PROJECT,
659
605
  subproject=_SUBPROJECT,
660
606
  )
661
- @telemetry.add_stmt_params_to_df(
662
- project=_PROJECT,
663
- subproject=_SUBPROJECT,
664
- )
665
607
  def predict_proba(
666
608
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
667
609
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -699,10 +641,6 @@ class RandomizedSearchCV(BaseTransformer):
699
641
  project=_PROJECT,
700
642
  subproject=_SUBPROJECT,
701
643
  )
702
- @telemetry.add_stmt_params_to_df(
703
- project=_PROJECT,
704
- subproject=_SUBPROJECT,
705
- )
706
644
  def predict_log_proba(
707
645
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
708
646
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -741,10 +679,6 @@ class RandomizedSearchCV(BaseTransformer):
741
679
  project=_PROJECT,
742
680
  subproject=_SUBPROJECT,
743
681
  )
744
- @telemetry.add_stmt_params_to_df(
745
- project=_PROJECT,
746
- subproject=_SUBPROJECT,
747
- )
748
682
  def decision_function(
749
683
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
750
684
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -781,6 +715,8 @@ class RandomizedSearchCV(BaseTransformer):
781
715
  @available_if(original_estimator_has_callable("score")) # type: ignore[misc]
782
716
  def score(self, dataset: Union[DataFrame, pd.DataFrame]) -> float:
783
717
  """
718
+ If implemented by the original estimator, return the score for the dataset.
719
+
784
720
  Args:
785
721
  dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
786
722
  Snowpark or Pandas DataFrame.
@@ -833,9 +769,9 @@ class RandomizedSearchCV(BaseTransformer):
833
769
  # For classifier, the type of predict is the same as the type of label
834
770
  if self._sklearn_object._estimator_type == "classifier":
835
771
  # label columns is the desired type for output
836
- outputs = _infer_signature(dataset[self.label_cols], "output")
772
+ outputs = list(_infer_signature(dataset[self.label_cols], "output"))
837
773
  # rename the output columns
838
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
774
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
839
775
  self._model_signature_dict["predict"] = ModelSignature(
840
776
  inputs, ([] if self._drop_input_cols else inputs) + outputs
841
777
  )
@@ -872,6 +808,9 @@ class RandomizedSearchCV(BaseTransformer):
872
808
  return self._model_signature_dict
873
809
 
874
810
  def to_sklearn(self) -> sklearn.model_selection.RandomizedSearchCV:
811
+ """
812
+ Get sklearn.model_selection.RandomizedSearchCV object.
813
+ """
875
814
  assert self._sklearn_object is not None
876
815
  return self._sklearn_object
877
816