snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.gaussian_process".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GaussianProcessClassifier(BaseTransformer):
57
58
  r"""Gaussian process classification (GPC) based on Laplace approximation
58
59
  For more details on this class, see [sklearn.gaussian_process.GaussianProcessClassifier]
@@ -60,6 +61,51 @@ class GaussianProcessClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  kernel: kernel instance, default=None
64
110
  The kernel specifying the covariance function of the GP. If None is
65
111
  passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
@@ -141,35 +187,6 @@ class GaussianProcessClassifier(BaseTransformer):
141
187
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
142
188
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
143
189
  for more details.
144
-
145
- input_cols: Optional[Union[str, List[str]]]
146
- A string or list of strings representing column names that contain features.
147
- If this parameter is not specified, all columns in the input DataFrame except
148
- the columns specified by label_cols and sample_weight_col parameters are
149
- considered input columns.
150
-
151
- label_cols: Optional[Union[str, List[str]]]
152
- A string or list of strings representing column names that contain labels.
153
- This is a required param for estimators, as there is no way to infer these
154
- columns. If this parameter is not specified, then object is fitted without
155
- labels (like a transformer).
156
-
157
- output_cols: Optional[Union[str, List[str]]]
158
- A string or list of strings representing column names that will store the
159
- output of predict and transform operations. The length of output_cols must
160
- match the expected number of output columns from the specific estimator or
161
- transformer class used.
162
- If this parameter is not specified, output column names are derived by
163
- adding an OUTPUT_ prefix to the label column names. These inferred output
164
- column names work for estimator's predict() method, but output_cols must
165
- be set explicitly for transformers.
166
-
167
- sample_weight_col: Optional[str]
168
- A string representing the column name containing the sample weights.
169
- This argument is only required when working with weighted datasets.
170
-
171
- drop_input_cols: Optional[bool], default=False
172
- If set, the response of predict(), transform() methods will not contain input columns.
173
190
  """
174
191
 
175
192
  def __init__( # type: ignore[no-untyped-def]
@@ -187,6 +204,7 @@ class GaussianProcessClassifier(BaseTransformer):
187
204
  input_cols: Optional[Union[str, Iterable[str]]] = None,
188
205
  output_cols: Optional[Union[str, Iterable[str]]] = None,
189
206
  label_cols: Optional[Union[str, Iterable[str]]] = None,
207
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
190
208
  drop_input_cols: Optional[bool] = False,
191
209
  sample_weight_col: Optional[str] = None,
192
210
  ) -> None:
@@ -195,9 +213,10 @@ class GaussianProcessClassifier(BaseTransformer):
195
213
  self.set_input_cols(input_cols)
196
214
  self.set_output_cols(output_cols)
197
215
  self.set_label_cols(label_cols)
216
+ self.set_passthrough_cols(passthrough_cols)
198
217
  self.set_drop_input_cols(drop_input_cols)
199
218
  self.set_sample_weight_col(sample_weight_col)
200
- deps = set(SklearnWrapperProvider().dependencies)
219
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
201
220
 
202
221
  self._deps = list(deps)
203
222
 
@@ -214,13 +233,14 @@ class GaussianProcessClassifier(BaseTransformer):
214
233
  args=init_args,
215
234
  klass=sklearn.gaussian_process.GaussianProcessClassifier
216
235
  )
217
- self._sklearn_object = sklearn.gaussian_process.GaussianProcessClassifier(
236
+ self._sklearn_object: Any = sklearn.gaussian_process.GaussianProcessClassifier(
218
237
  **cleaned_up_init_args,
219
238
  )
220
239
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
221
240
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
222
241
  self._snowpark_cols: Optional[List[str]] = self.input_cols
223
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
242
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
243
+ self._autogenerated = True
224
244
 
225
245
  def _get_rand_id(self) -> str:
226
246
  """
@@ -231,24 +251,6 @@ class GaussianProcessClassifier(BaseTransformer):
231
251
  """
232
252
  return str(uuid4()).replace("-", "_").upper()
233
253
 
234
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
235
- """
236
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
237
-
238
- Args:
239
- dataset: Input dataset.
240
- """
241
- if not self.input_cols:
242
- cols = [
243
- c for c in dataset.columns
244
- if c not in self.get_label_cols() and c != self.sample_weight_col
245
- ]
246
- self.set_input_cols(input_cols=cols)
247
-
248
- if not self.output_cols:
249
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
250
- self.set_output_cols(output_cols=cols)
251
-
252
254
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GaussianProcessClassifier":
253
255
  """
254
256
  Input columns setter.
@@ -294,54 +296,48 @@ class GaussianProcessClassifier(BaseTransformer):
294
296
  self
295
297
  """
296
298
  self._infer_input_output_cols(dataset)
297
- if isinstance(dataset, pd.DataFrame):
298
- assert self._sklearn_object is not None # keep mypy happy
299
- self._sklearn_object = self._handlers.fit_pandas(
300
- dataset,
301
- self._sklearn_object,
302
- self.input_cols,
303
- self.label_cols,
304
- self.sample_weight_col
305
- )
306
- elif isinstance(dataset, DataFrame):
307
- self._fit_snowpark(dataset)
308
- else:
309
- raise TypeError(
310
- f"Unexpected dataset type: {type(dataset)}."
311
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
312
- )
299
+ if isinstance(dataset, DataFrame):
300
+ session = dataset._session
301
+ assert session is not None # keep mypy happy
302
+ # Validate that key package version in user workspace are supported in snowflake conda channel
303
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
304
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
305
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
306
+
307
+ # Specify input columns so column pruning will be enforced
308
+ selected_cols = self._get_active_columns()
309
+ if len(selected_cols) > 0:
310
+ dataset = dataset.select(selected_cols)
311
+
312
+ self._snowpark_cols = dataset.select(self.input_cols).columns
313
+
314
+ # If we are already in a stored procedure, no need to kick off another one.
315
+ if SNOWML_SPROC_ENV in os.environ:
316
+ statement_params = telemetry.get_function_usage_statement_params(
317
+ project=_PROJECT,
318
+ subproject=_SUBPROJECT,
319
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianProcessClassifier.__class__.__name__),
320
+ api_calls=[Session.call],
321
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
322
+ )
323
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
324
+ pd_df.columns = dataset.columns
325
+ dataset = pd_df
326
+
327
+ model_trainer = ModelTrainerBuilder.build(
328
+ estimator=self._sklearn_object,
329
+ dataset=dataset,
330
+ input_cols=self.input_cols,
331
+ label_cols=self.label_cols,
332
+ sample_weight_col=self.sample_weight_col,
333
+ autogenerated=self._autogenerated,
334
+ subproject=_SUBPROJECT
335
+ )
336
+ self._sklearn_object = model_trainer.train()
313
337
  self._is_fitted = True
314
338
  self._get_model_signatures(dataset)
315
339
  return self
316
340
 
317
- def _fit_snowpark(self, dataset: DataFrame) -> None:
318
- session = dataset._session
319
- assert session is not None # keep mypy happy
320
- # Validate that key package version in user workspace are supported in snowflake conda channel
321
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
322
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
323
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
324
-
325
- # Specify input columns so column pruning will be enforced
326
- selected_cols = self._get_active_columns()
327
- if len(selected_cols) > 0:
328
- dataset = dataset.select(selected_cols)
329
-
330
- estimator = self._sklearn_object
331
- assert estimator is not None # Keep mypy happy
332
-
333
- self._snowpark_cols = dataset.select(self.input_cols).columns
334
-
335
- self._sklearn_object = self._handlers.fit_snowpark(
336
- dataset,
337
- session,
338
- estimator,
339
- ["snowflake-snowpark-python"] + self._get_dependencies(),
340
- self.input_cols,
341
- self.label_cols,
342
- self.sample_weight_col,
343
- )
344
-
345
341
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
346
342
  if self._drop_input_cols:
347
343
  return []
@@ -529,11 +525,6 @@ class GaussianProcessClassifier(BaseTransformer):
529
525
  subproject=_SUBPROJECT,
530
526
  custom_tags=dict([("autogen", True)]),
531
527
  )
532
- @telemetry.add_stmt_params_to_df(
533
- project=_PROJECT,
534
- subproject=_SUBPROJECT,
535
- custom_tags=dict([("autogen", True)]),
536
- )
537
528
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
538
529
  """Perform classification on an array of test vectors X
539
530
  For more details on this function, see [sklearn.gaussian_process.GaussianProcessClassifier.predict]
@@ -587,11 +578,6 @@ class GaussianProcessClassifier(BaseTransformer):
587
578
  subproject=_SUBPROJECT,
588
579
  custom_tags=dict([("autogen", True)]),
589
580
  )
590
- @telemetry.add_stmt_params_to_df(
591
- project=_PROJECT,
592
- subproject=_SUBPROJECT,
593
- custom_tags=dict([("autogen", True)]),
594
- )
595
581
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
596
582
  """Method not supported for this class.
597
583
 
@@ -648,7 +634,8 @@ class GaussianProcessClassifier(BaseTransformer):
648
634
  if False:
649
635
  self.fit(dataset)
650
636
  assert self._sklearn_object is not None
651
- return self._sklearn_object.labels_
637
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
638
+ return labels
652
639
  else:
653
640
  raise NotImplementedError
654
641
 
@@ -684,6 +671,7 @@ class GaussianProcessClassifier(BaseTransformer):
684
671
  output_cols = []
685
672
 
686
673
  # Make sure column names are valid snowflake identifiers.
674
+ assert output_cols is not None # Make MyPy happy
687
675
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
688
676
 
689
677
  return rv
@@ -694,11 +682,6 @@ class GaussianProcessClassifier(BaseTransformer):
694
682
  subproject=_SUBPROJECT,
695
683
  custom_tags=dict([("autogen", True)]),
696
684
  )
697
- @telemetry.add_stmt_params_to_df(
698
- project=_PROJECT,
699
- subproject=_SUBPROJECT,
700
- custom_tags=dict([("autogen", True)]),
701
- )
702
685
  def predict_proba(
703
686
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
704
687
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -741,11 +724,6 @@ class GaussianProcessClassifier(BaseTransformer):
741
724
  subproject=_SUBPROJECT,
742
725
  custom_tags=dict([("autogen", True)]),
743
726
  )
744
- @telemetry.add_stmt_params_to_df(
745
- project=_PROJECT,
746
- subproject=_SUBPROJECT,
747
- custom_tags=dict([("autogen", True)]),
748
- )
749
727
  def predict_log_proba(
750
728
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
751
729
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -784,16 +762,6 @@ class GaussianProcessClassifier(BaseTransformer):
784
762
  return output_df
785
763
 
786
764
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
787
- @telemetry.send_api_usage_telemetry(
788
- project=_PROJECT,
789
- subproject=_SUBPROJECT,
790
- custom_tags=dict([("autogen", True)]),
791
- )
792
- @telemetry.add_stmt_params_to_df(
793
- project=_PROJECT,
794
- subproject=_SUBPROJECT,
795
- custom_tags=dict([("autogen", True)]),
796
- )
797
765
  def decision_function(
798
766
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
799
767
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -894,11 +862,6 @@ class GaussianProcessClassifier(BaseTransformer):
894
862
  subproject=_SUBPROJECT,
895
863
  custom_tags=dict([("autogen", True)]),
896
864
  )
897
- @telemetry.add_stmt_params_to_df(
898
- project=_PROJECT,
899
- subproject=_SUBPROJECT,
900
- custom_tags=dict([("autogen", True)]),
901
- )
902
865
  def kneighbors(
903
866
  self,
904
867
  dataset: Union[DataFrame, pd.DataFrame],
@@ -958,18 +921,28 @@ class GaussianProcessClassifier(BaseTransformer):
958
921
  # For classifier, the type of predict is the same as the type of label
959
922
  if self._sklearn_object._estimator_type == 'classifier':
960
923
  # label columns is the desired type for output
961
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
924
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
962
925
  # rename the output columns
963
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
926
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
964
927
  self._model_signature_dict["predict"] = ModelSignature(inputs,
965
928
  ([] if self._drop_input_cols else inputs)
966
929
  + outputs)
930
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
931
+ # For outlier models, returns -1 for outliers and 1 for inliers.
932
+ # Clusterer returns int64 cluster labels.
933
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
934
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
935
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
936
+ ([] if self._drop_input_cols else inputs)
937
+ + outputs)
938
+
967
939
  # For regressor, the type of predict is float64
968
940
  elif self._sklearn_object._estimator_type == 'regressor':
969
941
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
970
942
  self._model_signature_dict["predict"] = ModelSignature(inputs,
971
943
  ([] if self._drop_input_cols else inputs)
972
944
  + outputs)
945
+
973
946
  for prob_func in PROB_FUNCTIONS:
974
947
  if hasattr(self, prob_func):
975
948
  output_cols_prefix: str = f"{prob_func}_"