snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.gaussian_process".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GaussianProcessClassifier(BaseTransformer):
|
57
58
|
r"""Gaussian process classification (GPC) based on Laplace approximation
|
58
59
|
For more details on this class, see [sklearn.gaussian_process.GaussianProcessClassifier]
|
@@ -60,6 +61,51 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
kernel: kernel instance, default=None
|
64
110
|
The kernel specifying the covariance function of the GP. If None is
|
65
111
|
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
|
@@ -141,35 +187,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
141
187
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
142
188
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
143
189
|
for more details.
|
144
|
-
|
145
|
-
input_cols: Optional[Union[str, List[str]]]
|
146
|
-
A string or list of strings representing column names that contain features.
|
147
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
148
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
149
|
-
considered input columns.
|
150
|
-
|
151
|
-
label_cols: Optional[Union[str, List[str]]]
|
152
|
-
A string or list of strings representing column names that contain labels.
|
153
|
-
This is a required param for estimators, as there is no way to infer these
|
154
|
-
columns. If this parameter is not specified, then object is fitted without
|
155
|
-
labels (like a transformer).
|
156
|
-
|
157
|
-
output_cols: Optional[Union[str, List[str]]]
|
158
|
-
A string or list of strings representing column names that will store the
|
159
|
-
output of predict and transform operations. The length of output_cols must
|
160
|
-
match the expected number of output columns from the specific estimator or
|
161
|
-
transformer class used.
|
162
|
-
If this parameter is not specified, output column names are derived by
|
163
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
164
|
-
column names work for estimator's predict() method, but output_cols must
|
165
|
-
be set explicitly for transformers.
|
166
|
-
|
167
|
-
sample_weight_col: Optional[str]
|
168
|
-
A string representing the column name containing the sample weights.
|
169
|
-
This argument is only required when working with weighted datasets.
|
170
|
-
|
171
|
-
drop_input_cols: Optional[bool], default=False
|
172
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
173
190
|
"""
|
174
191
|
|
175
192
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -187,6 +204,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
187
204
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
188
205
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
189
206
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
207
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
190
208
|
drop_input_cols: Optional[bool] = False,
|
191
209
|
sample_weight_col: Optional[str] = None,
|
192
210
|
) -> None:
|
@@ -195,9 +213,10 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
195
213
|
self.set_input_cols(input_cols)
|
196
214
|
self.set_output_cols(output_cols)
|
197
215
|
self.set_label_cols(label_cols)
|
216
|
+
self.set_passthrough_cols(passthrough_cols)
|
198
217
|
self.set_drop_input_cols(drop_input_cols)
|
199
218
|
self.set_sample_weight_col(sample_weight_col)
|
200
|
-
deps = set(
|
219
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
201
220
|
|
202
221
|
self._deps = list(deps)
|
203
222
|
|
@@ -214,13 +233,14 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
214
233
|
args=init_args,
|
215
234
|
klass=sklearn.gaussian_process.GaussianProcessClassifier
|
216
235
|
)
|
217
|
-
self._sklearn_object = sklearn.gaussian_process.GaussianProcessClassifier(
|
236
|
+
self._sklearn_object: Any = sklearn.gaussian_process.GaussianProcessClassifier(
|
218
237
|
**cleaned_up_init_args,
|
219
238
|
)
|
220
239
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
221
240
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
222
241
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
223
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
242
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianProcessClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
243
|
+
self._autogenerated = True
|
224
244
|
|
225
245
|
def _get_rand_id(self) -> str:
|
226
246
|
"""
|
@@ -231,24 +251,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
231
251
|
"""
|
232
252
|
return str(uuid4()).replace("-", "_").upper()
|
233
253
|
|
234
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
235
|
-
"""
|
236
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
237
|
-
|
238
|
-
Args:
|
239
|
-
dataset: Input dataset.
|
240
|
-
"""
|
241
|
-
if not self.input_cols:
|
242
|
-
cols = [
|
243
|
-
c for c in dataset.columns
|
244
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
245
|
-
]
|
246
|
-
self.set_input_cols(input_cols=cols)
|
247
|
-
|
248
|
-
if not self.output_cols:
|
249
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
250
|
-
self.set_output_cols(output_cols=cols)
|
251
|
-
|
252
254
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GaussianProcessClassifier":
|
253
255
|
"""
|
254
256
|
Input columns setter.
|
@@ -294,54 +296,48 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
294
296
|
self
|
295
297
|
"""
|
296
298
|
self._infer_input_output_cols(dataset)
|
297
|
-
if isinstance(dataset,
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
self.
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
299
|
+
if isinstance(dataset, DataFrame):
|
300
|
+
session = dataset._session
|
301
|
+
assert session is not None # keep mypy happy
|
302
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
303
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
304
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
305
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
306
|
+
|
307
|
+
# Specify input columns so column pruning will be enforced
|
308
|
+
selected_cols = self._get_active_columns()
|
309
|
+
if len(selected_cols) > 0:
|
310
|
+
dataset = dataset.select(selected_cols)
|
311
|
+
|
312
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
313
|
+
|
314
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
315
|
+
if SNOWML_SPROC_ENV in os.environ:
|
316
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
317
|
+
project=_PROJECT,
|
318
|
+
subproject=_SUBPROJECT,
|
319
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianProcessClassifier.__class__.__name__),
|
320
|
+
api_calls=[Session.call],
|
321
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
322
|
+
)
|
323
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
324
|
+
pd_df.columns = dataset.columns
|
325
|
+
dataset = pd_df
|
326
|
+
|
327
|
+
model_trainer = ModelTrainerBuilder.build(
|
328
|
+
estimator=self._sklearn_object,
|
329
|
+
dataset=dataset,
|
330
|
+
input_cols=self.input_cols,
|
331
|
+
label_cols=self.label_cols,
|
332
|
+
sample_weight_col=self.sample_weight_col,
|
333
|
+
autogenerated=self._autogenerated,
|
334
|
+
subproject=_SUBPROJECT
|
335
|
+
)
|
336
|
+
self._sklearn_object = model_trainer.train()
|
313
337
|
self._is_fitted = True
|
314
338
|
self._get_model_signatures(dataset)
|
315
339
|
return self
|
316
340
|
|
317
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
318
|
-
session = dataset._session
|
319
|
-
assert session is not None # keep mypy happy
|
320
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
321
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
322
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
323
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
324
|
-
|
325
|
-
# Specify input columns so column pruning will be enforced
|
326
|
-
selected_cols = self._get_active_columns()
|
327
|
-
if len(selected_cols) > 0:
|
328
|
-
dataset = dataset.select(selected_cols)
|
329
|
-
|
330
|
-
estimator = self._sklearn_object
|
331
|
-
assert estimator is not None # Keep mypy happy
|
332
|
-
|
333
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
334
|
-
|
335
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
336
|
-
dataset,
|
337
|
-
session,
|
338
|
-
estimator,
|
339
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
340
|
-
self.input_cols,
|
341
|
-
self.label_cols,
|
342
|
-
self.sample_weight_col,
|
343
|
-
)
|
344
|
-
|
345
341
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
346
342
|
if self._drop_input_cols:
|
347
343
|
return []
|
@@ -529,11 +525,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
529
525
|
subproject=_SUBPROJECT,
|
530
526
|
custom_tags=dict([("autogen", True)]),
|
531
527
|
)
|
532
|
-
@telemetry.add_stmt_params_to_df(
|
533
|
-
project=_PROJECT,
|
534
|
-
subproject=_SUBPROJECT,
|
535
|
-
custom_tags=dict([("autogen", True)]),
|
536
|
-
)
|
537
528
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
538
529
|
"""Perform classification on an array of test vectors X
|
539
530
|
For more details on this function, see [sklearn.gaussian_process.GaussianProcessClassifier.predict]
|
@@ -587,11 +578,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
587
578
|
subproject=_SUBPROJECT,
|
588
579
|
custom_tags=dict([("autogen", True)]),
|
589
580
|
)
|
590
|
-
@telemetry.add_stmt_params_to_df(
|
591
|
-
project=_PROJECT,
|
592
|
-
subproject=_SUBPROJECT,
|
593
|
-
custom_tags=dict([("autogen", True)]),
|
594
|
-
)
|
595
581
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
596
582
|
"""Method not supported for this class.
|
597
583
|
|
@@ -648,7 +634,8 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
648
634
|
if False:
|
649
635
|
self.fit(dataset)
|
650
636
|
assert self._sklearn_object is not None
|
651
|
-
|
637
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
638
|
+
return labels
|
652
639
|
else:
|
653
640
|
raise NotImplementedError
|
654
641
|
|
@@ -684,6 +671,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
684
671
|
output_cols = []
|
685
672
|
|
686
673
|
# Make sure column names are valid snowflake identifiers.
|
674
|
+
assert output_cols is not None # Make MyPy happy
|
687
675
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
688
676
|
|
689
677
|
return rv
|
@@ -694,11 +682,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
694
682
|
subproject=_SUBPROJECT,
|
695
683
|
custom_tags=dict([("autogen", True)]),
|
696
684
|
)
|
697
|
-
@telemetry.add_stmt_params_to_df(
|
698
|
-
project=_PROJECT,
|
699
|
-
subproject=_SUBPROJECT,
|
700
|
-
custom_tags=dict([("autogen", True)]),
|
701
|
-
)
|
702
685
|
def predict_proba(
|
703
686
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
704
687
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -741,11 +724,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
741
724
|
subproject=_SUBPROJECT,
|
742
725
|
custom_tags=dict([("autogen", True)]),
|
743
726
|
)
|
744
|
-
@telemetry.add_stmt_params_to_df(
|
745
|
-
project=_PROJECT,
|
746
|
-
subproject=_SUBPROJECT,
|
747
|
-
custom_tags=dict([("autogen", True)]),
|
748
|
-
)
|
749
727
|
def predict_log_proba(
|
750
728
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
751
729
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -784,16 +762,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
784
762
|
return output_df
|
785
763
|
|
786
764
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
787
|
-
@telemetry.send_api_usage_telemetry(
|
788
|
-
project=_PROJECT,
|
789
|
-
subproject=_SUBPROJECT,
|
790
|
-
custom_tags=dict([("autogen", True)]),
|
791
|
-
)
|
792
|
-
@telemetry.add_stmt_params_to_df(
|
793
|
-
project=_PROJECT,
|
794
|
-
subproject=_SUBPROJECT,
|
795
|
-
custom_tags=dict([("autogen", True)]),
|
796
|
-
)
|
797
765
|
def decision_function(
|
798
766
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
799
767
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -894,11 +862,6 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
894
862
|
subproject=_SUBPROJECT,
|
895
863
|
custom_tags=dict([("autogen", True)]),
|
896
864
|
)
|
897
|
-
@telemetry.add_stmt_params_to_df(
|
898
|
-
project=_PROJECT,
|
899
|
-
subproject=_SUBPROJECT,
|
900
|
-
custom_tags=dict([("autogen", True)]),
|
901
|
-
)
|
902
865
|
def kneighbors(
|
903
866
|
self,
|
904
867
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -958,18 +921,28 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
958
921
|
# For classifier, the type of predict is the same as the type of label
|
959
922
|
if self._sklearn_object._estimator_type == 'classifier':
|
960
923
|
# label columns is the desired type for output
|
961
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
924
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
962
925
|
# rename the output columns
|
963
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
926
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
964
927
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
965
928
|
([] if self._drop_input_cols else inputs)
|
966
929
|
+ outputs)
|
930
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
931
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
932
|
+
# Clusterer returns int64 cluster labels.
|
933
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
934
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
935
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
936
|
+
([] if self._drop_input_cols else inputs)
|
937
|
+
+ outputs)
|
938
|
+
|
967
939
|
# For regressor, the type of predict is float64
|
968
940
|
elif self._sklearn_object._estimator_type == 'regressor':
|
969
941
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
970
942
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
971
943
|
([] if self._drop_input_cols else inputs)
|
972
944
|
+ outputs)
|
945
|
+
|
973
946
|
for prob_func in PROB_FUNCTIONS:
|
974
947
|
if hasattr(self, prob_func):
|
975
948
|
output_cols_prefix: str = f"{prob_func}_"
|