snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ColumnTransformer(BaseTransformer):
|
57
58
|
r"""Applies transformers to columns of an array or pandas DataFrame
|
58
59
|
For more details on this class, see [sklearn.compose.ColumnTransformer]
|
@@ -60,6 +61,49 @@ class ColumnTransformer(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
transformers: list of tuples
|
64
108
|
List of (name, transformer, columns) tuples specifying the
|
65
109
|
transformer objects to be applied to subsets of the data.
|
@@ -126,35 +170,6 @@ class ColumnTransformer(BaseTransformer):
|
|
126
170
|
with the name of the transformer that generated that feature.
|
127
171
|
If False, :meth:`get_feature_names_out` will not prefix any feature
|
128
172
|
names and will error if feature names are not unique.
|
129
|
-
|
130
|
-
input_cols: Optional[Union[str, List[str]]]
|
131
|
-
A string or list of strings representing column names that contain features.
|
132
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
133
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
134
|
-
considered input columns.
|
135
|
-
|
136
|
-
label_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain labels.
|
138
|
-
This is a required param for estimators, as there is no way to infer these
|
139
|
-
columns. If this parameter is not specified, then object is fitted without
|
140
|
-
labels (like a transformer).
|
141
|
-
|
142
|
-
output_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that will store the
|
144
|
-
output of predict and transform operations. The length of output_cols must
|
145
|
-
match the expected number of output columns from the specific estimator or
|
146
|
-
transformer class used.
|
147
|
-
If this parameter is not specified, output column names are derived by
|
148
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
149
|
-
column names work for estimator's predict() method, but output_cols must
|
150
|
-
be set explicitly for transformers.
|
151
|
-
|
152
|
-
sample_weight_col: Optional[str]
|
153
|
-
A string representing the column name containing the sample weights.
|
154
|
-
This argument is only required when working with weighted datasets.
|
155
|
-
|
156
|
-
drop_input_cols: Optional[bool], default=False
|
157
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
158
173
|
"""
|
159
174
|
|
160
175
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -170,6 +185,7 @@ class ColumnTransformer(BaseTransformer):
|
|
170
185
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
171
186
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
172
187
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
188
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
173
189
|
drop_input_cols: Optional[bool] = False,
|
174
190
|
sample_weight_col: Optional[str] = None,
|
175
191
|
) -> None:
|
@@ -178,9 +194,10 @@ class ColumnTransformer(BaseTransformer):
|
|
178
194
|
self.set_input_cols(input_cols)
|
179
195
|
self.set_output_cols(output_cols)
|
180
196
|
self.set_label_cols(label_cols)
|
197
|
+
self.set_passthrough_cols(passthrough_cols)
|
181
198
|
self.set_drop_input_cols(drop_input_cols)
|
182
199
|
self.set_sample_weight_col(sample_weight_col)
|
183
|
-
deps = set(
|
200
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
184
201
|
deps = deps | gather_dependencies(transformers)
|
185
202
|
self._deps = list(deps)
|
186
203
|
transformers = transform_snowml_obj_to_sklearn_obj(transformers)
|
@@ -195,13 +212,14 @@ class ColumnTransformer(BaseTransformer):
|
|
195
212
|
args=init_args,
|
196
213
|
klass=sklearn.compose.ColumnTransformer
|
197
214
|
)
|
198
|
-
self._sklearn_object = sklearn.compose.ColumnTransformer(
|
215
|
+
self._sklearn_object: Any = sklearn.compose.ColumnTransformer(
|
199
216
|
**cleaned_up_init_args,
|
200
217
|
)
|
201
218
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
202
219
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
203
220
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
204
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ColumnTransformer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
221
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ColumnTransformer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
222
|
+
self._autogenerated = True
|
205
223
|
|
206
224
|
def _get_rand_id(self) -> str:
|
207
225
|
"""
|
@@ -212,24 +230,6 @@ class ColumnTransformer(BaseTransformer):
|
|
212
230
|
"""
|
213
231
|
return str(uuid4()).replace("-", "_").upper()
|
214
232
|
|
215
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
216
|
-
"""
|
217
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
218
|
-
|
219
|
-
Args:
|
220
|
-
dataset: Input dataset.
|
221
|
-
"""
|
222
|
-
if not self.input_cols:
|
223
|
-
cols = [
|
224
|
-
c for c in dataset.columns
|
225
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
226
|
-
]
|
227
|
-
self.set_input_cols(input_cols=cols)
|
228
|
-
|
229
|
-
if not self.output_cols:
|
230
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
231
|
-
self.set_output_cols(output_cols=cols)
|
232
|
-
|
233
233
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ColumnTransformer":
|
234
234
|
"""
|
235
235
|
Input columns setter.
|
@@ -275,54 +275,48 @@ class ColumnTransformer(BaseTransformer):
|
|
275
275
|
self
|
276
276
|
"""
|
277
277
|
self._infer_input_output_cols(dataset)
|
278
|
-
if isinstance(dataset,
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
self.
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
278
|
+
if isinstance(dataset, DataFrame):
|
279
|
+
session = dataset._session
|
280
|
+
assert session is not None # keep mypy happy
|
281
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
282
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
283
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
284
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
285
|
+
|
286
|
+
# Specify input columns so column pruning will be enforced
|
287
|
+
selected_cols = self._get_active_columns()
|
288
|
+
if len(selected_cols) > 0:
|
289
|
+
dataset = dataset.select(selected_cols)
|
290
|
+
|
291
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
292
|
+
|
293
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
294
|
+
if SNOWML_SPROC_ENV in os.environ:
|
295
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
296
|
+
project=_PROJECT,
|
297
|
+
subproject=_SUBPROJECT,
|
298
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ColumnTransformer.__class__.__name__),
|
299
|
+
api_calls=[Session.call],
|
300
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
301
|
+
)
|
302
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
303
|
+
pd_df.columns = dataset.columns
|
304
|
+
dataset = pd_df
|
305
|
+
|
306
|
+
model_trainer = ModelTrainerBuilder.build(
|
307
|
+
estimator=self._sklearn_object,
|
308
|
+
dataset=dataset,
|
309
|
+
input_cols=self.input_cols,
|
310
|
+
label_cols=self.label_cols,
|
311
|
+
sample_weight_col=self.sample_weight_col,
|
312
|
+
autogenerated=self._autogenerated,
|
313
|
+
subproject=_SUBPROJECT
|
314
|
+
)
|
315
|
+
self._sklearn_object = model_trainer.train()
|
294
316
|
self._is_fitted = True
|
295
317
|
self._get_model_signatures(dataset)
|
296
318
|
return self
|
297
319
|
|
298
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
299
|
-
session = dataset._session
|
300
|
-
assert session is not None # keep mypy happy
|
301
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
302
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
303
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
304
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
305
|
-
|
306
|
-
# Specify input columns so column pruning will be enforced
|
307
|
-
selected_cols = self._get_active_columns()
|
308
|
-
if len(selected_cols) > 0:
|
309
|
-
dataset = dataset.select(selected_cols)
|
310
|
-
|
311
|
-
estimator = self._sklearn_object
|
312
|
-
assert estimator is not None # Keep mypy happy
|
313
|
-
|
314
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
315
|
-
|
316
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
317
|
-
dataset,
|
318
|
-
session,
|
319
|
-
estimator,
|
320
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
321
|
-
self.input_cols,
|
322
|
-
self.label_cols,
|
323
|
-
self.sample_weight_col,
|
324
|
-
)
|
325
|
-
|
326
320
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
327
321
|
if self._drop_input_cols:
|
328
322
|
return []
|
@@ -510,11 +504,6 @@ class ColumnTransformer(BaseTransformer):
|
|
510
504
|
subproject=_SUBPROJECT,
|
511
505
|
custom_tags=dict([("autogen", True)]),
|
512
506
|
)
|
513
|
-
@telemetry.add_stmt_params_to_df(
|
514
|
-
project=_PROJECT,
|
515
|
-
subproject=_SUBPROJECT,
|
516
|
-
custom_tags=dict([("autogen", True)]),
|
517
|
-
)
|
518
507
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
519
508
|
"""Method not supported for this class.
|
520
509
|
|
@@ -566,11 +555,6 @@ class ColumnTransformer(BaseTransformer):
|
|
566
555
|
subproject=_SUBPROJECT,
|
567
556
|
custom_tags=dict([("autogen", True)]),
|
568
557
|
)
|
569
|
-
@telemetry.add_stmt_params_to_df(
|
570
|
-
project=_PROJECT,
|
571
|
-
subproject=_SUBPROJECT,
|
572
|
-
custom_tags=dict([("autogen", True)]),
|
573
|
-
)
|
574
558
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
575
559
|
"""Transform X separately by each transformer, concatenate results
|
576
560
|
For more details on this function, see [sklearn.compose.ColumnTransformer.transform]
|
@@ -629,7 +613,8 @@ class ColumnTransformer(BaseTransformer):
|
|
629
613
|
if False:
|
630
614
|
self.fit(dataset)
|
631
615
|
assert self._sklearn_object is not None
|
632
|
-
|
616
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
617
|
+
return labels
|
633
618
|
else:
|
634
619
|
raise NotImplementedError
|
635
620
|
|
@@ -665,6 +650,7 @@ class ColumnTransformer(BaseTransformer):
|
|
665
650
|
output_cols = []
|
666
651
|
|
667
652
|
# Make sure column names are valid snowflake identifiers.
|
653
|
+
assert output_cols is not None # Make MyPy happy
|
668
654
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
669
655
|
|
670
656
|
return rv
|
@@ -675,11 +661,6 @@ class ColumnTransformer(BaseTransformer):
|
|
675
661
|
subproject=_SUBPROJECT,
|
676
662
|
custom_tags=dict([("autogen", True)]),
|
677
663
|
)
|
678
|
-
@telemetry.add_stmt_params_to_df(
|
679
|
-
project=_PROJECT,
|
680
|
-
subproject=_SUBPROJECT,
|
681
|
-
custom_tags=dict([("autogen", True)]),
|
682
|
-
)
|
683
664
|
def predict_proba(
|
684
665
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
685
666
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -720,11 +701,6 @@ class ColumnTransformer(BaseTransformer):
|
|
720
701
|
subproject=_SUBPROJECT,
|
721
702
|
custom_tags=dict([("autogen", True)]),
|
722
703
|
)
|
723
|
-
@telemetry.add_stmt_params_to_df(
|
724
|
-
project=_PROJECT,
|
725
|
-
subproject=_SUBPROJECT,
|
726
|
-
custom_tags=dict([("autogen", True)]),
|
727
|
-
)
|
728
704
|
def predict_log_proba(
|
729
705
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
730
706
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -761,16 +737,6 @@ class ColumnTransformer(BaseTransformer):
|
|
761
737
|
return output_df
|
762
738
|
|
763
739
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
764
|
-
@telemetry.send_api_usage_telemetry(
|
765
|
-
project=_PROJECT,
|
766
|
-
subproject=_SUBPROJECT,
|
767
|
-
custom_tags=dict([("autogen", True)]),
|
768
|
-
)
|
769
|
-
@telemetry.add_stmt_params_to_df(
|
770
|
-
project=_PROJECT,
|
771
|
-
subproject=_SUBPROJECT,
|
772
|
-
custom_tags=dict([("autogen", True)]),
|
773
|
-
)
|
774
740
|
def decision_function(
|
775
741
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
776
742
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -869,11 +835,6 @@ class ColumnTransformer(BaseTransformer):
|
|
869
835
|
subproject=_SUBPROJECT,
|
870
836
|
custom_tags=dict([("autogen", True)]),
|
871
837
|
)
|
872
|
-
@telemetry.add_stmt_params_to_df(
|
873
|
-
project=_PROJECT,
|
874
|
-
subproject=_SUBPROJECT,
|
875
|
-
custom_tags=dict([("autogen", True)]),
|
876
|
-
)
|
877
838
|
def kneighbors(
|
878
839
|
self,
|
879
840
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -933,18 +894,28 @@ class ColumnTransformer(BaseTransformer):
|
|
933
894
|
# For classifier, the type of predict is the same as the type of label
|
934
895
|
if self._sklearn_object._estimator_type == 'classifier':
|
935
896
|
# label columns is the desired type for output
|
936
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
897
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
937
898
|
# rename the output columns
|
938
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
899
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
900
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
901
|
+
([] if self._drop_input_cols else inputs)
|
902
|
+
+ outputs)
|
903
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
904
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
905
|
+
# Clusterer returns int64 cluster labels.
|
906
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
907
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
939
908
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
940
909
|
([] if self._drop_input_cols else inputs)
|
941
910
|
+ outputs)
|
911
|
+
|
942
912
|
# For regressor, the type of predict is float64
|
943
913
|
elif self._sklearn_object._estimator_type == 'regressor':
|
944
914
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
945
915
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
946
916
|
([] if self._drop_input_cols else inputs)
|
947
917
|
+ outputs)
|
918
|
+
|
948
919
|
for prob_func in PROB_FUNCTIONS:
|
949
920
|
if hasattr(self, prob_func):
|
950
921
|
output_cols_prefix: str = f"{prob_func}_"
|