snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class NuSVR(BaseTransformer):
57
58
  r"""Nu Support Vector Regression
58
59
  For more details on this class, see [sklearn.svm.NuSVR]
@@ -60,6 +61,51 @@ class NuSVR(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  nu: float, default=0.5
64
110
  An upper bound on the fraction of training errors and a lower bound of
65
111
  the fraction of support vectors. Should be in the interval (0, 1]. By
@@ -106,35 +152,6 @@ class NuSVR(BaseTransformer):
106
152
 
107
153
  max_iter: int, default=-1
108
154
  Hard limit on iterations within solver, or -1 for no limit.
109
-
110
- input_cols: Optional[Union[str, List[str]]]
111
- A string or list of strings representing column names that contain features.
112
- If this parameter is not specified, all columns in the input DataFrame except
113
- the columns specified by label_cols and sample_weight_col parameters are
114
- considered input columns.
115
-
116
- label_cols: Optional[Union[str, List[str]]]
117
- A string or list of strings representing column names that contain labels.
118
- This is a required param for estimators, as there is no way to infer these
119
- columns. If this parameter is not specified, then object is fitted without
120
- labels (like a transformer).
121
-
122
- output_cols: Optional[Union[str, List[str]]]
123
- A string or list of strings representing column names that will store the
124
- output of predict and transform operations. The length of output_cols must
125
- match the expected number of output columns from the specific estimator or
126
- transformer class used.
127
- If this parameter is not specified, output column names are derived by
128
- adding an OUTPUT_ prefix to the label column names. These inferred output
129
- column names work for estimator's predict() method, but output_cols must
130
- be set explicitly for transformers.
131
-
132
- sample_weight_col: Optional[str]
133
- A string representing the column name containing the sample weights.
134
- This argument is only required when working with weighted datasets.
135
-
136
- drop_input_cols: Optional[bool], default=False
137
- If set, the response of predict(), transform() methods will not contain input columns.
138
155
  """
139
156
 
140
157
  def __init__( # type: ignore[no-untyped-def]
@@ -154,6 +171,7 @@ class NuSVR(BaseTransformer):
154
171
  input_cols: Optional[Union[str, Iterable[str]]] = None,
155
172
  output_cols: Optional[Union[str, Iterable[str]]] = None,
156
173
  label_cols: Optional[Union[str, Iterable[str]]] = None,
174
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
157
175
  drop_input_cols: Optional[bool] = False,
158
176
  sample_weight_col: Optional[str] = None,
159
177
  ) -> None:
@@ -162,9 +180,10 @@ class NuSVR(BaseTransformer):
162
180
  self.set_input_cols(input_cols)
163
181
  self.set_output_cols(output_cols)
164
182
  self.set_label_cols(label_cols)
183
+ self.set_passthrough_cols(passthrough_cols)
165
184
  self.set_drop_input_cols(drop_input_cols)
166
185
  self.set_sample_weight_col(sample_weight_col)
167
- deps = set(SklearnWrapperProvider().dependencies)
186
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
168
187
 
169
188
  self._deps = list(deps)
170
189
 
@@ -183,13 +202,14 @@ class NuSVR(BaseTransformer):
183
202
  args=init_args,
184
203
  klass=sklearn.svm.NuSVR
185
204
  )
186
- self._sklearn_object = sklearn.svm.NuSVR(
205
+ self._sklearn_object: Any = sklearn.svm.NuSVR(
187
206
  **cleaned_up_init_args,
188
207
  )
189
208
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
190
209
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
191
210
  self._snowpark_cols: Optional[List[str]] = self.input_cols
192
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
211
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
212
+ self._autogenerated = True
193
213
 
194
214
  def _get_rand_id(self) -> str:
195
215
  """
@@ -200,24 +220,6 @@ class NuSVR(BaseTransformer):
200
220
  """
201
221
  return str(uuid4()).replace("-", "_").upper()
202
222
 
203
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
204
- """
205
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
206
-
207
- Args:
208
- dataset: Input dataset.
209
- """
210
- if not self.input_cols:
211
- cols = [
212
- c for c in dataset.columns
213
- if c not in self.get_label_cols() and c != self.sample_weight_col
214
- ]
215
- self.set_input_cols(input_cols=cols)
216
-
217
- if not self.output_cols:
218
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
219
- self.set_output_cols(output_cols=cols)
220
-
221
223
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "NuSVR":
222
224
  """
223
225
  Input columns setter.
@@ -263,54 +265,48 @@ class NuSVR(BaseTransformer):
263
265
  self
264
266
  """
265
267
  self._infer_input_output_cols(dataset)
266
- if isinstance(dataset, pd.DataFrame):
267
- assert self._sklearn_object is not None # keep mypy happy
268
- self._sklearn_object = self._handlers.fit_pandas(
269
- dataset,
270
- self._sklearn_object,
271
- self.input_cols,
272
- self.label_cols,
273
- self.sample_weight_col
274
- )
275
- elif isinstance(dataset, DataFrame):
276
- self._fit_snowpark(dataset)
277
- else:
278
- raise TypeError(
279
- f"Unexpected dataset type: {type(dataset)}."
280
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
281
- )
268
+ if isinstance(dataset, DataFrame):
269
+ session = dataset._session
270
+ assert session is not None # keep mypy happy
271
+ # Validate that key package version in user workspace are supported in snowflake conda channel
272
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
273
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
274
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
275
+
276
+ # Specify input columns so column pruning will be enforced
277
+ selected_cols = self._get_active_columns()
278
+ if len(selected_cols) > 0:
279
+ dataset = dataset.select(selected_cols)
280
+
281
+ self._snowpark_cols = dataset.select(self.input_cols).columns
282
+
283
+ # If we are already in a stored procedure, no need to kick off another one.
284
+ if SNOWML_SPROC_ENV in os.environ:
285
+ statement_params = telemetry.get_function_usage_statement_params(
286
+ project=_PROJECT,
287
+ subproject=_SUBPROJECT,
288
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVR.__class__.__name__),
289
+ api_calls=[Session.call],
290
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
291
+ )
292
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
293
+ pd_df.columns = dataset.columns
294
+ dataset = pd_df
295
+
296
+ model_trainer = ModelTrainerBuilder.build(
297
+ estimator=self._sklearn_object,
298
+ dataset=dataset,
299
+ input_cols=self.input_cols,
300
+ label_cols=self.label_cols,
301
+ sample_weight_col=self.sample_weight_col,
302
+ autogenerated=self._autogenerated,
303
+ subproject=_SUBPROJECT
304
+ )
305
+ self._sklearn_object = model_trainer.train()
282
306
  self._is_fitted = True
283
307
  self._get_model_signatures(dataset)
284
308
  return self
285
309
 
286
- def _fit_snowpark(self, dataset: DataFrame) -> None:
287
- session = dataset._session
288
- assert session is not None # keep mypy happy
289
- # Validate that key package version in user workspace are supported in snowflake conda channel
290
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
291
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
292
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
293
-
294
- # Specify input columns so column pruning will be enforced
295
- selected_cols = self._get_active_columns()
296
- if len(selected_cols) > 0:
297
- dataset = dataset.select(selected_cols)
298
-
299
- estimator = self._sklearn_object
300
- assert estimator is not None # Keep mypy happy
301
-
302
- self._snowpark_cols = dataset.select(self.input_cols).columns
303
-
304
- self._sklearn_object = self._handlers.fit_snowpark(
305
- dataset,
306
- session,
307
- estimator,
308
- ["snowflake-snowpark-python"] + self._get_dependencies(),
309
- self.input_cols,
310
- self.label_cols,
311
- self.sample_weight_col,
312
- )
313
-
314
310
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
315
311
  if self._drop_input_cols:
316
312
  return []
@@ -498,11 +494,6 @@ class NuSVR(BaseTransformer):
498
494
  subproject=_SUBPROJECT,
499
495
  custom_tags=dict([("autogen", True)]),
500
496
  )
501
- @telemetry.add_stmt_params_to_df(
502
- project=_PROJECT,
503
- subproject=_SUBPROJECT,
504
- custom_tags=dict([("autogen", True)]),
505
- )
506
497
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
507
498
  """Perform regression on samples in X
508
499
  For more details on this function, see [sklearn.svm.NuSVR.predict]
@@ -556,11 +547,6 @@ class NuSVR(BaseTransformer):
556
547
  subproject=_SUBPROJECT,
557
548
  custom_tags=dict([("autogen", True)]),
558
549
  )
559
- @telemetry.add_stmt_params_to_df(
560
- project=_PROJECT,
561
- subproject=_SUBPROJECT,
562
- custom_tags=dict([("autogen", True)]),
563
- )
564
550
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
565
551
  """Method not supported for this class.
566
552
 
@@ -617,7 +603,8 @@ class NuSVR(BaseTransformer):
617
603
  if False:
618
604
  self.fit(dataset)
619
605
  assert self._sklearn_object is not None
620
- return self._sklearn_object.labels_
606
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
607
+ return labels
621
608
  else:
622
609
  raise NotImplementedError
623
610
 
@@ -653,6 +640,7 @@ class NuSVR(BaseTransformer):
653
640
  output_cols = []
654
641
 
655
642
  # Make sure column names are valid snowflake identifiers.
643
+ assert output_cols is not None # Make MyPy happy
656
644
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
657
645
 
658
646
  return rv
@@ -663,11 +651,6 @@ class NuSVR(BaseTransformer):
663
651
  subproject=_SUBPROJECT,
664
652
  custom_tags=dict([("autogen", True)]),
665
653
  )
666
- @telemetry.add_stmt_params_to_df(
667
- project=_PROJECT,
668
- subproject=_SUBPROJECT,
669
- custom_tags=dict([("autogen", True)]),
670
- )
671
654
  def predict_proba(
672
655
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
673
656
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -708,11 +691,6 @@ class NuSVR(BaseTransformer):
708
691
  subproject=_SUBPROJECT,
709
692
  custom_tags=dict([("autogen", True)]),
710
693
  )
711
- @telemetry.add_stmt_params_to_df(
712
- project=_PROJECT,
713
- subproject=_SUBPROJECT,
714
- custom_tags=dict([("autogen", True)]),
715
- )
716
694
  def predict_log_proba(
717
695
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
718
696
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -749,16 +727,6 @@ class NuSVR(BaseTransformer):
749
727
  return output_df
750
728
 
751
729
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
752
- @telemetry.send_api_usage_telemetry(
753
- project=_PROJECT,
754
- subproject=_SUBPROJECT,
755
- custom_tags=dict([("autogen", True)]),
756
- )
757
- @telemetry.add_stmt_params_to_df(
758
- project=_PROJECT,
759
- subproject=_SUBPROJECT,
760
- custom_tags=dict([("autogen", True)]),
761
- )
762
730
  def decision_function(
763
731
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
764
732
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -859,11 +827,6 @@ class NuSVR(BaseTransformer):
859
827
  subproject=_SUBPROJECT,
860
828
  custom_tags=dict([("autogen", True)]),
861
829
  )
862
- @telemetry.add_stmt_params_to_df(
863
- project=_PROJECT,
864
- subproject=_SUBPROJECT,
865
- custom_tags=dict([("autogen", True)]),
866
- )
867
830
  def kneighbors(
868
831
  self,
869
832
  dataset: Union[DataFrame, pd.DataFrame],
@@ -923,18 +886,28 @@ class NuSVR(BaseTransformer):
923
886
  # For classifier, the type of predict is the same as the type of label
924
887
  if self._sklearn_object._estimator_type == 'classifier':
925
888
  # label columns is the desired type for output
926
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
889
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
927
890
  # rename the output columns
928
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
891
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
929
892
  self._model_signature_dict["predict"] = ModelSignature(inputs,
930
893
  ([] if self._drop_input_cols else inputs)
931
894
  + outputs)
895
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
896
+ # For outlier models, returns -1 for outliers and 1 for inliers.
897
+ # Clusterer returns int64 cluster labels.
898
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
899
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
900
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
901
+ ([] if self._drop_input_cols else inputs)
902
+ + outputs)
903
+
932
904
  # For regressor, the type of predict is float64
933
905
  elif self._sklearn_object._estimator_type == 'regressor':
934
906
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
935
907
  self._model_signature_dict["predict"] = ModelSignature(inputs,
936
908
  ([] if self._drop_input_cols else inputs)
937
909
  + outputs)
910
+
938
911
  for prob_func in PROB_FUNCTIONS:
939
912
  if hasattr(self, prob_func):
940
913
  output_cols_prefix: str = f"{prob_func}_"