snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class NuSVR(BaseTransformer):
|
57
58
|
r"""Nu Support Vector Regression
|
58
59
|
For more details on this class, see [sklearn.svm.NuSVR]
|
@@ -60,6 +61,51 @@ class NuSVR(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
nu: float, default=0.5
|
64
110
|
An upper bound on the fraction of training errors and a lower bound of
|
65
111
|
the fraction of support vectors. Should be in the interval (0, 1]. By
|
@@ -106,35 +152,6 @@ class NuSVR(BaseTransformer):
|
|
106
152
|
|
107
153
|
max_iter: int, default=-1
|
108
154
|
Hard limit on iterations within solver, or -1 for no limit.
|
109
|
-
|
110
|
-
input_cols: Optional[Union[str, List[str]]]
|
111
|
-
A string or list of strings representing column names that contain features.
|
112
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
113
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
114
|
-
considered input columns.
|
115
|
-
|
116
|
-
label_cols: Optional[Union[str, List[str]]]
|
117
|
-
A string or list of strings representing column names that contain labels.
|
118
|
-
This is a required param for estimators, as there is no way to infer these
|
119
|
-
columns. If this parameter is not specified, then object is fitted without
|
120
|
-
labels (like a transformer).
|
121
|
-
|
122
|
-
output_cols: Optional[Union[str, List[str]]]
|
123
|
-
A string or list of strings representing column names that will store the
|
124
|
-
output of predict and transform operations. The length of output_cols must
|
125
|
-
match the expected number of output columns from the specific estimator or
|
126
|
-
transformer class used.
|
127
|
-
If this parameter is not specified, output column names are derived by
|
128
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
129
|
-
column names work for estimator's predict() method, but output_cols must
|
130
|
-
be set explicitly for transformers.
|
131
|
-
|
132
|
-
sample_weight_col: Optional[str]
|
133
|
-
A string representing the column name containing the sample weights.
|
134
|
-
This argument is only required when working with weighted datasets.
|
135
|
-
|
136
|
-
drop_input_cols: Optional[bool], default=False
|
137
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
138
155
|
"""
|
139
156
|
|
140
157
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -154,6 +171,7 @@ class NuSVR(BaseTransformer):
|
|
154
171
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
155
172
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
156
173
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
174
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
157
175
|
drop_input_cols: Optional[bool] = False,
|
158
176
|
sample_weight_col: Optional[str] = None,
|
159
177
|
) -> None:
|
@@ -162,9 +180,10 @@ class NuSVR(BaseTransformer):
|
|
162
180
|
self.set_input_cols(input_cols)
|
163
181
|
self.set_output_cols(output_cols)
|
164
182
|
self.set_label_cols(label_cols)
|
183
|
+
self.set_passthrough_cols(passthrough_cols)
|
165
184
|
self.set_drop_input_cols(drop_input_cols)
|
166
185
|
self.set_sample_weight_col(sample_weight_col)
|
167
|
-
deps = set(
|
186
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
168
187
|
|
169
188
|
self._deps = list(deps)
|
170
189
|
|
@@ -183,13 +202,14 @@ class NuSVR(BaseTransformer):
|
|
183
202
|
args=init_args,
|
184
203
|
klass=sklearn.svm.NuSVR
|
185
204
|
)
|
186
|
-
self._sklearn_object = sklearn.svm.NuSVR(
|
205
|
+
self._sklearn_object: Any = sklearn.svm.NuSVR(
|
187
206
|
**cleaned_up_init_args,
|
188
207
|
)
|
189
208
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
190
209
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
191
210
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
192
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
211
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NuSVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
212
|
+
self._autogenerated = True
|
193
213
|
|
194
214
|
def _get_rand_id(self) -> str:
|
195
215
|
"""
|
@@ -200,24 +220,6 @@ class NuSVR(BaseTransformer):
|
|
200
220
|
"""
|
201
221
|
return str(uuid4()).replace("-", "_").upper()
|
202
222
|
|
203
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
204
|
-
"""
|
205
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
206
|
-
|
207
|
-
Args:
|
208
|
-
dataset: Input dataset.
|
209
|
-
"""
|
210
|
-
if not self.input_cols:
|
211
|
-
cols = [
|
212
|
-
c for c in dataset.columns
|
213
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
214
|
-
]
|
215
|
-
self.set_input_cols(input_cols=cols)
|
216
|
-
|
217
|
-
if not self.output_cols:
|
218
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
219
|
-
self.set_output_cols(output_cols=cols)
|
220
|
-
|
221
223
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "NuSVR":
|
222
224
|
"""
|
223
225
|
Input columns setter.
|
@@ -263,54 +265,48 @@ class NuSVR(BaseTransformer):
|
|
263
265
|
self
|
264
266
|
"""
|
265
267
|
self._infer_input_output_cols(dataset)
|
266
|
-
if isinstance(dataset,
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
self.
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
268
|
+
if isinstance(dataset, DataFrame):
|
269
|
+
session = dataset._session
|
270
|
+
assert session is not None # keep mypy happy
|
271
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
272
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
273
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
274
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
275
|
+
|
276
|
+
# Specify input columns so column pruning will be enforced
|
277
|
+
selected_cols = self._get_active_columns()
|
278
|
+
if len(selected_cols) > 0:
|
279
|
+
dataset = dataset.select(selected_cols)
|
280
|
+
|
281
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
282
|
+
|
283
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
284
|
+
if SNOWML_SPROC_ENV in os.environ:
|
285
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
286
|
+
project=_PROJECT,
|
287
|
+
subproject=_SUBPROJECT,
|
288
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVR.__class__.__name__),
|
289
|
+
api_calls=[Session.call],
|
290
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
291
|
+
)
|
292
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
293
|
+
pd_df.columns = dataset.columns
|
294
|
+
dataset = pd_df
|
295
|
+
|
296
|
+
model_trainer = ModelTrainerBuilder.build(
|
297
|
+
estimator=self._sklearn_object,
|
298
|
+
dataset=dataset,
|
299
|
+
input_cols=self.input_cols,
|
300
|
+
label_cols=self.label_cols,
|
301
|
+
sample_weight_col=self.sample_weight_col,
|
302
|
+
autogenerated=self._autogenerated,
|
303
|
+
subproject=_SUBPROJECT
|
304
|
+
)
|
305
|
+
self._sklearn_object = model_trainer.train()
|
282
306
|
self._is_fitted = True
|
283
307
|
self._get_model_signatures(dataset)
|
284
308
|
return self
|
285
309
|
|
286
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
287
|
-
session = dataset._session
|
288
|
-
assert session is not None # keep mypy happy
|
289
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
290
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
291
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
292
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
293
|
-
|
294
|
-
# Specify input columns so column pruning will be enforced
|
295
|
-
selected_cols = self._get_active_columns()
|
296
|
-
if len(selected_cols) > 0:
|
297
|
-
dataset = dataset.select(selected_cols)
|
298
|
-
|
299
|
-
estimator = self._sklearn_object
|
300
|
-
assert estimator is not None # Keep mypy happy
|
301
|
-
|
302
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
303
|
-
|
304
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
305
|
-
dataset,
|
306
|
-
session,
|
307
|
-
estimator,
|
308
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
309
|
-
self.input_cols,
|
310
|
-
self.label_cols,
|
311
|
-
self.sample_weight_col,
|
312
|
-
)
|
313
|
-
|
314
310
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
315
311
|
if self._drop_input_cols:
|
316
312
|
return []
|
@@ -498,11 +494,6 @@ class NuSVR(BaseTransformer):
|
|
498
494
|
subproject=_SUBPROJECT,
|
499
495
|
custom_tags=dict([("autogen", True)]),
|
500
496
|
)
|
501
|
-
@telemetry.add_stmt_params_to_df(
|
502
|
-
project=_PROJECT,
|
503
|
-
subproject=_SUBPROJECT,
|
504
|
-
custom_tags=dict([("autogen", True)]),
|
505
|
-
)
|
506
497
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
507
498
|
"""Perform regression on samples in X
|
508
499
|
For more details on this function, see [sklearn.svm.NuSVR.predict]
|
@@ -556,11 +547,6 @@ class NuSVR(BaseTransformer):
|
|
556
547
|
subproject=_SUBPROJECT,
|
557
548
|
custom_tags=dict([("autogen", True)]),
|
558
549
|
)
|
559
|
-
@telemetry.add_stmt_params_to_df(
|
560
|
-
project=_PROJECT,
|
561
|
-
subproject=_SUBPROJECT,
|
562
|
-
custom_tags=dict([("autogen", True)]),
|
563
|
-
)
|
564
550
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
565
551
|
"""Method not supported for this class.
|
566
552
|
|
@@ -617,7 +603,8 @@ class NuSVR(BaseTransformer):
|
|
617
603
|
if False:
|
618
604
|
self.fit(dataset)
|
619
605
|
assert self._sklearn_object is not None
|
620
|
-
|
606
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
607
|
+
return labels
|
621
608
|
else:
|
622
609
|
raise NotImplementedError
|
623
610
|
|
@@ -653,6 +640,7 @@ class NuSVR(BaseTransformer):
|
|
653
640
|
output_cols = []
|
654
641
|
|
655
642
|
# Make sure column names are valid snowflake identifiers.
|
643
|
+
assert output_cols is not None # Make MyPy happy
|
656
644
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
657
645
|
|
658
646
|
return rv
|
@@ -663,11 +651,6 @@ class NuSVR(BaseTransformer):
|
|
663
651
|
subproject=_SUBPROJECT,
|
664
652
|
custom_tags=dict([("autogen", True)]),
|
665
653
|
)
|
666
|
-
@telemetry.add_stmt_params_to_df(
|
667
|
-
project=_PROJECT,
|
668
|
-
subproject=_SUBPROJECT,
|
669
|
-
custom_tags=dict([("autogen", True)]),
|
670
|
-
)
|
671
654
|
def predict_proba(
|
672
655
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
673
656
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -708,11 +691,6 @@ class NuSVR(BaseTransformer):
|
|
708
691
|
subproject=_SUBPROJECT,
|
709
692
|
custom_tags=dict([("autogen", True)]),
|
710
693
|
)
|
711
|
-
@telemetry.add_stmt_params_to_df(
|
712
|
-
project=_PROJECT,
|
713
|
-
subproject=_SUBPROJECT,
|
714
|
-
custom_tags=dict([("autogen", True)]),
|
715
|
-
)
|
716
694
|
def predict_log_proba(
|
717
695
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
718
696
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -749,16 +727,6 @@ class NuSVR(BaseTransformer):
|
|
749
727
|
return output_df
|
750
728
|
|
751
729
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
752
|
-
@telemetry.send_api_usage_telemetry(
|
753
|
-
project=_PROJECT,
|
754
|
-
subproject=_SUBPROJECT,
|
755
|
-
custom_tags=dict([("autogen", True)]),
|
756
|
-
)
|
757
|
-
@telemetry.add_stmt_params_to_df(
|
758
|
-
project=_PROJECT,
|
759
|
-
subproject=_SUBPROJECT,
|
760
|
-
custom_tags=dict([("autogen", True)]),
|
761
|
-
)
|
762
730
|
def decision_function(
|
763
731
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
764
732
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -859,11 +827,6 @@ class NuSVR(BaseTransformer):
|
|
859
827
|
subproject=_SUBPROJECT,
|
860
828
|
custom_tags=dict([("autogen", True)]),
|
861
829
|
)
|
862
|
-
@telemetry.add_stmt_params_to_df(
|
863
|
-
project=_PROJECT,
|
864
|
-
subproject=_SUBPROJECT,
|
865
|
-
custom_tags=dict([("autogen", True)]),
|
866
|
-
)
|
867
830
|
def kneighbors(
|
868
831
|
self,
|
869
832
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -923,18 +886,28 @@ class NuSVR(BaseTransformer):
|
|
923
886
|
# For classifier, the type of predict is the same as the type of label
|
924
887
|
if self._sklearn_object._estimator_type == 'classifier':
|
925
888
|
# label columns is the desired type for output
|
926
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
889
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
927
890
|
# rename the output columns
|
928
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
891
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
929
892
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
930
893
|
([] if self._drop_input_cols else inputs)
|
931
894
|
+ outputs)
|
895
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
896
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
897
|
+
# Clusterer returns int64 cluster labels.
|
898
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
899
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
900
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
901
|
+
([] if self._drop_input_cols else inputs)
|
902
|
+
+ outputs)
|
903
|
+
|
932
904
|
# For regressor, the type of predict is float64
|
933
905
|
elif self._sklearn_object._estimator_type == 'regressor':
|
934
906
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
935
907
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
936
908
|
([] if self._drop_input_cols else inputs)
|
937
909
|
+ outputs)
|
910
|
+
|
938
911
|
for prob_func in PROB_FUNCTIONS:
|
939
912
|
if hasattr(self, prob_func):
|
940
913
|
output_cols_prefix: str = f"{prob_func}_"
|