snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LedoitWolf(BaseTransformer):
57
58
  r"""LedoitWolf Estimator
58
59
  For more details on this class, see [sklearn.covariance.LedoitWolf]
@@ -60,48 +61,62 @@ class LedoitWolf(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- store_precision: bool, default=True
64
- Specify if the estimated precision is stored.
65
-
66
- assume_centered: bool, default=False
67
- If True, data will not be centered before computation.
68
- Useful when working with data whose mean is almost, but not exactly
69
- zero.
70
- If False (default), data will be centered before computation.
71
-
72
- block_size: int, default=1000
73
- Size of blocks into which the covariance matrix will be split
74
- during its Ledoit-Wolf estimation. This is purely a memory
75
- optimization and does not affect results.
76
64
 
77
65
  input_cols: Optional[Union[str, List[str]]]
78
66
  A string or list of strings representing column names that contain features.
79
67
  If this parameter is not specified, all columns in the input DataFrame except
80
- the columns specified by label_cols and sample_weight_col parameters are
81
- considered input columns.
82
-
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
83
72
  label_cols: Optional[Union[str, List[str]]]
84
- A string or list of strings representing column names that contain labels.
85
- This is a required param for estimators, as there is no way to infer these
86
- columns. If this parameter is not specified, then object is fitted without
87
- labels (like a transformer).
88
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
89
75
  output_cols: Optional[Union[str, List[str]]]
90
76
  A string or list of strings representing column names that will store the
91
77
  output of predict and transform operations. The length of output_cols must
92
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
93
79
  transformer class used.
94
- If this parameter is not specified, output column names are derived by
95
- adding an OUTPUT_ prefix to the label column names. These inferred output
96
- column names work for estimator's predict() method, but output_cols must
97
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
98
89
 
99
90
  sample_weight_col: Optional[str]
100
91
  A string representing the column name containing the sample weights.
101
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
102
103
 
103
104
  drop_input_cols: Optional[bool], default=False
104
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ store_precision: bool, default=True
108
+ Specify if the estimated precision is stored.
109
+
110
+ assume_centered: bool, default=False
111
+ If True, data will not be centered before computation.
112
+ Useful when working with data whose mean is almost, but not exactly
113
+ zero.
114
+ If False (default), data will be centered before computation.
115
+
116
+ block_size: int, default=1000
117
+ Size of blocks into which the covariance matrix will be split
118
+ during its Ledoit-Wolf estimation. This is purely a memory
119
+ optimization and does not affect results.
105
120
  """
106
121
 
107
122
  def __init__( # type: ignore[no-untyped-def]
@@ -113,6 +128,7 @@ class LedoitWolf(BaseTransformer):
113
128
  input_cols: Optional[Union[str, Iterable[str]]] = None,
114
129
  output_cols: Optional[Union[str, Iterable[str]]] = None,
115
130
  label_cols: Optional[Union[str, Iterable[str]]] = None,
131
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
116
132
  drop_input_cols: Optional[bool] = False,
117
133
  sample_weight_col: Optional[str] = None,
118
134
  ) -> None:
@@ -121,9 +137,10 @@ class LedoitWolf(BaseTransformer):
121
137
  self.set_input_cols(input_cols)
122
138
  self.set_output_cols(output_cols)
123
139
  self.set_label_cols(label_cols)
140
+ self.set_passthrough_cols(passthrough_cols)
124
141
  self.set_drop_input_cols(drop_input_cols)
125
142
  self.set_sample_weight_col(sample_weight_col)
126
- deps = set(SklearnWrapperProvider().dependencies)
143
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
127
144
 
128
145
  self._deps = list(deps)
129
146
 
@@ -134,13 +151,14 @@ class LedoitWolf(BaseTransformer):
134
151
  args=init_args,
135
152
  klass=sklearn.covariance.LedoitWolf
136
153
  )
137
- self._sklearn_object = sklearn.covariance.LedoitWolf(
154
+ self._sklearn_object: Any = sklearn.covariance.LedoitWolf(
138
155
  **cleaned_up_init_args,
139
156
  )
140
157
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
141
158
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
142
159
  self._snowpark_cols: Optional[List[str]] = self.input_cols
143
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LedoitWolf.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
160
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LedoitWolf.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
161
+ self._autogenerated = True
144
162
 
145
163
  def _get_rand_id(self) -> str:
146
164
  """
@@ -151,24 +169,6 @@ class LedoitWolf(BaseTransformer):
151
169
  """
152
170
  return str(uuid4()).replace("-", "_").upper()
153
171
 
154
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
155
- """
156
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
157
-
158
- Args:
159
- dataset: Input dataset.
160
- """
161
- if not self.input_cols:
162
- cols = [
163
- c for c in dataset.columns
164
- if c not in self.get_label_cols() and c != self.sample_weight_col
165
- ]
166
- self.set_input_cols(input_cols=cols)
167
-
168
- if not self.output_cols:
169
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
170
- self.set_output_cols(output_cols=cols)
171
-
172
172
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LedoitWolf":
173
173
  """
174
174
  Input columns setter.
@@ -214,54 +214,48 @@ class LedoitWolf(BaseTransformer):
214
214
  self
215
215
  """
216
216
  self._infer_input_output_cols(dataset)
217
- if isinstance(dataset, pd.DataFrame):
218
- assert self._sklearn_object is not None # keep mypy happy
219
- self._sklearn_object = self._handlers.fit_pandas(
220
- dataset,
221
- self._sklearn_object,
222
- self.input_cols,
223
- self.label_cols,
224
- self.sample_weight_col
225
- )
226
- elif isinstance(dataset, DataFrame):
227
- self._fit_snowpark(dataset)
228
- else:
229
- raise TypeError(
230
- f"Unexpected dataset type: {type(dataset)}."
231
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
232
- )
217
+ if isinstance(dataset, DataFrame):
218
+ session = dataset._session
219
+ assert session is not None # keep mypy happy
220
+ # Validate that key package version in user workspace are supported in snowflake conda channel
221
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
222
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
223
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
224
+
225
+ # Specify input columns so column pruning will be enforced
226
+ selected_cols = self._get_active_columns()
227
+ if len(selected_cols) > 0:
228
+ dataset = dataset.select(selected_cols)
229
+
230
+ self._snowpark_cols = dataset.select(self.input_cols).columns
231
+
232
+ # If we are already in a stored procedure, no need to kick off another one.
233
+ if SNOWML_SPROC_ENV in os.environ:
234
+ statement_params = telemetry.get_function_usage_statement_params(
235
+ project=_PROJECT,
236
+ subproject=_SUBPROJECT,
237
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LedoitWolf.__class__.__name__),
238
+ api_calls=[Session.call],
239
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
240
+ )
241
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
242
+ pd_df.columns = dataset.columns
243
+ dataset = pd_df
244
+
245
+ model_trainer = ModelTrainerBuilder.build(
246
+ estimator=self._sklearn_object,
247
+ dataset=dataset,
248
+ input_cols=self.input_cols,
249
+ label_cols=self.label_cols,
250
+ sample_weight_col=self.sample_weight_col,
251
+ autogenerated=self._autogenerated,
252
+ subproject=_SUBPROJECT
253
+ )
254
+ self._sklearn_object = model_trainer.train()
233
255
  self._is_fitted = True
234
256
  self._get_model_signatures(dataset)
235
257
  return self
236
258
 
237
- def _fit_snowpark(self, dataset: DataFrame) -> None:
238
- session = dataset._session
239
- assert session is not None # keep mypy happy
240
- # Validate that key package version in user workspace are supported in snowflake conda channel
241
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
242
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
243
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
244
-
245
- # Specify input columns so column pruning will be enforced
246
- selected_cols = self._get_active_columns()
247
- if len(selected_cols) > 0:
248
- dataset = dataset.select(selected_cols)
249
-
250
- estimator = self._sklearn_object
251
- assert estimator is not None # Keep mypy happy
252
-
253
- self._snowpark_cols = dataset.select(self.input_cols).columns
254
-
255
- self._sklearn_object = self._handlers.fit_snowpark(
256
- dataset,
257
- session,
258
- estimator,
259
- ["snowflake-snowpark-python"] + self._get_dependencies(),
260
- self.input_cols,
261
- self.label_cols,
262
- self.sample_weight_col,
263
- )
264
-
265
259
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
266
260
  if self._drop_input_cols:
267
261
  return []
@@ -449,11 +443,6 @@ class LedoitWolf(BaseTransformer):
449
443
  subproject=_SUBPROJECT,
450
444
  custom_tags=dict([("autogen", True)]),
451
445
  )
452
- @telemetry.add_stmt_params_to_df(
453
- project=_PROJECT,
454
- subproject=_SUBPROJECT,
455
- custom_tags=dict([("autogen", True)]),
456
- )
457
446
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
458
447
  """Method not supported for this class.
459
448
 
@@ -505,11 +494,6 @@ class LedoitWolf(BaseTransformer):
505
494
  subproject=_SUBPROJECT,
506
495
  custom_tags=dict([("autogen", True)]),
507
496
  )
508
- @telemetry.add_stmt_params_to_df(
509
- project=_PROJECT,
510
- subproject=_SUBPROJECT,
511
- custom_tags=dict([("autogen", True)]),
512
- )
513
497
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
514
498
  """Method not supported for this class.
515
499
 
@@ -566,7 +550,8 @@ class LedoitWolf(BaseTransformer):
566
550
  if False:
567
551
  self.fit(dataset)
568
552
  assert self._sklearn_object is not None
569
- return self._sklearn_object.labels_
553
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
554
+ return labels
570
555
  else:
571
556
  raise NotImplementedError
572
557
 
@@ -602,6 +587,7 @@ class LedoitWolf(BaseTransformer):
602
587
  output_cols = []
603
588
 
604
589
  # Make sure column names are valid snowflake identifiers.
590
+ assert output_cols is not None # Make MyPy happy
605
591
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
606
592
 
607
593
  return rv
@@ -612,11 +598,6 @@ class LedoitWolf(BaseTransformer):
612
598
  subproject=_SUBPROJECT,
613
599
  custom_tags=dict([("autogen", True)]),
614
600
  )
615
- @telemetry.add_stmt_params_to_df(
616
- project=_PROJECT,
617
- subproject=_SUBPROJECT,
618
- custom_tags=dict([("autogen", True)]),
619
- )
620
601
  def predict_proba(
621
602
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
622
603
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -657,11 +638,6 @@ class LedoitWolf(BaseTransformer):
657
638
  subproject=_SUBPROJECT,
658
639
  custom_tags=dict([("autogen", True)]),
659
640
  )
660
- @telemetry.add_stmt_params_to_df(
661
- project=_PROJECT,
662
- subproject=_SUBPROJECT,
663
- custom_tags=dict([("autogen", True)]),
664
- )
665
641
  def predict_log_proba(
666
642
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
667
643
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -698,16 +674,6 @@ class LedoitWolf(BaseTransformer):
698
674
  return output_df
699
675
 
700
676
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
701
- @telemetry.send_api_usage_telemetry(
702
- project=_PROJECT,
703
- subproject=_SUBPROJECT,
704
- custom_tags=dict([("autogen", True)]),
705
- )
706
- @telemetry.add_stmt_params_to_df(
707
- project=_PROJECT,
708
- subproject=_SUBPROJECT,
709
- custom_tags=dict([("autogen", True)]),
710
- )
711
677
  def decision_function(
712
678
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
713
679
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -808,11 +774,6 @@ class LedoitWolf(BaseTransformer):
808
774
  subproject=_SUBPROJECT,
809
775
  custom_tags=dict([("autogen", True)]),
810
776
  )
811
- @telemetry.add_stmt_params_to_df(
812
- project=_PROJECT,
813
- subproject=_SUBPROJECT,
814
- custom_tags=dict([("autogen", True)]),
815
- )
816
777
  def kneighbors(
817
778
  self,
818
779
  dataset: Union[DataFrame, pd.DataFrame],
@@ -872,18 +833,28 @@ class LedoitWolf(BaseTransformer):
872
833
  # For classifier, the type of predict is the same as the type of label
873
834
  if self._sklearn_object._estimator_type == 'classifier':
874
835
  # label columns is the desired type for output
875
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
836
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
876
837
  # rename the output columns
877
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
838
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
839
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
840
+ ([] if self._drop_input_cols else inputs)
841
+ + outputs)
842
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
843
+ # For outlier models, returns -1 for outliers and 1 for inliers.
844
+ # Clusterer returns int64 cluster labels.
845
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
846
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
878
847
  self._model_signature_dict["predict"] = ModelSignature(inputs,
879
848
  ([] if self._drop_input_cols else inputs)
880
849
  + outputs)
850
+
881
851
  # For regressor, the type of predict is float64
882
852
  elif self._sklearn_object._estimator_type == 'regressor':
883
853
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
884
854
  self._model_signature_dict["predict"] = ModelSignature(inputs,
885
855
  ([] if self._drop_input_cols else inputs)
886
856
  + outputs)
857
+
887
858
  for prob_func in PROB_FUNCTIONS:
888
859
  if hasattr(self, prob_func):
889
860
  output_cols_prefix: str = f"{prob_func}_"