snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LedoitWolf(BaseTransformer):
|
57
58
|
r"""LedoitWolf Estimator
|
58
59
|
For more details on this class, see [sklearn.covariance.LedoitWolf]
|
@@ -60,48 +61,62 @@ class LedoitWolf(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
store_precision: bool, default=True
|
64
|
-
Specify if the estimated precision is stored.
|
65
|
-
|
66
|
-
assume_centered: bool, default=False
|
67
|
-
If True, data will not be centered before computation.
|
68
|
-
Useful when working with data whose mean is almost, but not exactly
|
69
|
-
zero.
|
70
|
-
If False (default), data will be centered before computation.
|
71
|
-
|
72
|
-
block_size: int, default=1000
|
73
|
-
Size of blocks into which the covariance matrix will be split
|
74
|
-
during its Ledoit-Wolf estimation. This is purely a memory
|
75
|
-
optimization and does not affect results.
|
76
64
|
|
77
65
|
input_cols: Optional[Union[str, List[str]]]
|
78
66
|
A string or list of strings representing column names that contain features.
|
79
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
80
|
-
the columns specified by label_cols
|
81
|
-
considered input columns.
|
82
|
-
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
83
72
|
label_cols: Optional[Union[str, List[str]]]
|
84
|
-
|
85
|
-
|
86
|
-
columns. If this parameter is not specified, then object is fitted without
|
87
|
-
labels (like a transformer).
|
88
|
-
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
89
75
|
output_cols: Optional[Union[str, List[str]]]
|
90
76
|
A string or list of strings representing column names that will store the
|
91
77
|
output of predict and transform operations. The length of output_cols must
|
92
|
-
match the expected number of output columns from the specific
|
78
|
+
match the expected number of output columns from the specific predictor or
|
93
79
|
transformer class used.
|
94
|
-
If this parameter
|
95
|
-
|
96
|
-
|
97
|
-
be set explicitly for transformers.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
98
89
|
|
99
90
|
sample_weight_col: Optional[str]
|
100
91
|
A string representing the column name containing the sample weights.
|
101
|
-
This argument is only required when working with weighted datasets.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
102
103
|
|
103
104
|
drop_input_cols: Optional[bool], default=False
|
104
105
|
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
107
|
+
store_precision: bool, default=True
|
108
|
+
Specify if the estimated precision is stored.
|
109
|
+
|
110
|
+
assume_centered: bool, default=False
|
111
|
+
If True, data will not be centered before computation.
|
112
|
+
Useful when working with data whose mean is almost, but not exactly
|
113
|
+
zero.
|
114
|
+
If False (default), data will be centered before computation.
|
115
|
+
|
116
|
+
block_size: int, default=1000
|
117
|
+
Size of blocks into which the covariance matrix will be split
|
118
|
+
during its Ledoit-Wolf estimation. This is purely a memory
|
119
|
+
optimization and does not affect results.
|
105
120
|
"""
|
106
121
|
|
107
122
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -113,6 +128,7 @@ class LedoitWolf(BaseTransformer):
|
|
113
128
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
114
129
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
115
130
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
131
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
116
132
|
drop_input_cols: Optional[bool] = False,
|
117
133
|
sample_weight_col: Optional[str] = None,
|
118
134
|
) -> None:
|
@@ -121,9 +137,10 @@ class LedoitWolf(BaseTransformer):
|
|
121
137
|
self.set_input_cols(input_cols)
|
122
138
|
self.set_output_cols(output_cols)
|
123
139
|
self.set_label_cols(label_cols)
|
140
|
+
self.set_passthrough_cols(passthrough_cols)
|
124
141
|
self.set_drop_input_cols(drop_input_cols)
|
125
142
|
self.set_sample_weight_col(sample_weight_col)
|
126
|
-
deps = set(
|
143
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
127
144
|
|
128
145
|
self._deps = list(deps)
|
129
146
|
|
@@ -134,13 +151,14 @@ class LedoitWolf(BaseTransformer):
|
|
134
151
|
args=init_args,
|
135
152
|
klass=sklearn.covariance.LedoitWolf
|
136
153
|
)
|
137
|
-
self._sklearn_object = sklearn.covariance.LedoitWolf(
|
154
|
+
self._sklearn_object: Any = sklearn.covariance.LedoitWolf(
|
138
155
|
**cleaned_up_init_args,
|
139
156
|
)
|
140
157
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
141
158
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
142
159
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
143
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LedoitWolf.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
160
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LedoitWolf.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
161
|
+
self._autogenerated = True
|
144
162
|
|
145
163
|
def _get_rand_id(self) -> str:
|
146
164
|
"""
|
@@ -151,24 +169,6 @@ class LedoitWolf(BaseTransformer):
|
|
151
169
|
"""
|
152
170
|
return str(uuid4()).replace("-", "_").upper()
|
153
171
|
|
154
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
155
|
-
"""
|
156
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
157
|
-
|
158
|
-
Args:
|
159
|
-
dataset: Input dataset.
|
160
|
-
"""
|
161
|
-
if not self.input_cols:
|
162
|
-
cols = [
|
163
|
-
c for c in dataset.columns
|
164
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
165
|
-
]
|
166
|
-
self.set_input_cols(input_cols=cols)
|
167
|
-
|
168
|
-
if not self.output_cols:
|
169
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
170
|
-
self.set_output_cols(output_cols=cols)
|
171
|
-
|
172
172
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LedoitWolf":
|
173
173
|
"""
|
174
174
|
Input columns setter.
|
@@ -214,54 +214,48 @@ class LedoitWolf(BaseTransformer):
|
|
214
214
|
self
|
215
215
|
"""
|
216
216
|
self._infer_input_output_cols(dataset)
|
217
|
-
if isinstance(dataset,
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
self.
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
217
|
+
if isinstance(dataset, DataFrame):
|
218
|
+
session = dataset._session
|
219
|
+
assert session is not None # keep mypy happy
|
220
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
221
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
222
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
223
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
224
|
+
|
225
|
+
# Specify input columns so column pruning will be enforced
|
226
|
+
selected_cols = self._get_active_columns()
|
227
|
+
if len(selected_cols) > 0:
|
228
|
+
dataset = dataset.select(selected_cols)
|
229
|
+
|
230
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
231
|
+
|
232
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
233
|
+
if SNOWML_SPROC_ENV in os.environ:
|
234
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
235
|
+
project=_PROJECT,
|
236
|
+
subproject=_SUBPROJECT,
|
237
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LedoitWolf.__class__.__name__),
|
238
|
+
api_calls=[Session.call],
|
239
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
240
|
+
)
|
241
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
242
|
+
pd_df.columns = dataset.columns
|
243
|
+
dataset = pd_df
|
244
|
+
|
245
|
+
model_trainer = ModelTrainerBuilder.build(
|
246
|
+
estimator=self._sklearn_object,
|
247
|
+
dataset=dataset,
|
248
|
+
input_cols=self.input_cols,
|
249
|
+
label_cols=self.label_cols,
|
250
|
+
sample_weight_col=self.sample_weight_col,
|
251
|
+
autogenerated=self._autogenerated,
|
252
|
+
subproject=_SUBPROJECT
|
253
|
+
)
|
254
|
+
self._sklearn_object = model_trainer.train()
|
233
255
|
self._is_fitted = True
|
234
256
|
self._get_model_signatures(dataset)
|
235
257
|
return self
|
236
258
|
|
237
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
238
|
-
session = dataset._session
|
239
|
-
assert session is not None # keep mypy happy
|
240
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
241
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
242
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
243
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
244
|
-
|
245
|
-
# Specify input columns so column pruning will be enforced
|
246
|
-
selected_cols = self._get_active_columns()
|
247
|
-
if len(selected_cols) > 0:
|
248
|
-
dataset = dataset.select(selected_cols)
|
249
|
-
|
250
|
-
estimator = self._sklearn_object
|
251
|
-
assert estimator is not None # Keep mypy happy
|
252
|
-
|
253
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
254
|
-
|
255
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
256
|
-
dataset,
|
257
|
-
session,
|
258
|
-
estimator,
|
259
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
260
|
-
self.input_cols,
|
261
|
-
self.label_cols,
|
262
|
-
self.sample_weight_col,
|
263
|
-
)
|
264
|
-
|
265
259
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
266
260
|
if self._drop_input_cols:
|
267
261
|
return []
|
@@ -449,11 +443,6 @@ class LedoitWolf(BaseTransformer):
|
|
449
443
|
subproject=_SUBPROJECT,
|
450
444
|
custom_tags=dict([("autogen", True)]),
|
451
445
|
)
|
452
|
-
@telemetry.add_stmt_params_to_df(
|
453
|
-
project=_PROJECT,
|
454
|
-
subproject=_SUBPROJECT,
|
455
|
-
custom_tags=dict([("autogen", True)]),
|
456
|
-
)
|
457
446
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
458
447
|
"""Method not supported for this class.
|
459
448
|
|
@@ -505,11 +494,6 @@ class LedoitWolf(BaseTransformer):
|
|
505
494
|
subproject=_SUBPROJECT,
|
506
495
|
custom_tags=dict([("autogen", True)]),
|
507
496
|
)
|
508
|
-
@telemetry.add_stmt_params_to_df(
|
509
|
-
project=_PROJECT,
|
510
|
-
subproject=_SUBPROJECT,
|
511
|
-
custom_tags=dict([("autogen", True)]),
|
512
|
-
)
|
513
497
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
514
498
|
"""Method not supported for this class.
|
515
499
|
|
@@ -566,7 +550,8 @@ class LedoitWolf(BaseTransformer):
|
|
566
550
|
if False:
|
567
551
|
self.fit(dataset)
|
568
552
|
assert self._sklearn_object is not None
|
569
|
-
|
553
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
554
|
+
return labels
|
570
555
|
else:
|
571
556
|
raise NotImplementedError
|
572
557
|
|
@@ -602,6 +587,7 @@ class LedoitWolf(BaseTransformer):
|
|
602
587
|
output_cols = []
|
603
588
|
|
604
589
|
# Make sure column names are valid snowflake identifiers.
|
590
|
+
assert output_cols is not None # Make MyPy happy
|
605
591
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
606
592
|
|
607
593
|
return rv
|
@@ -612,11 +598,6 @@ class LedoitWolf(BaseTransformer):
|
|
612
598
|
subproject=_SUBPROJECT,
|
613
599
|
custom_tags=dict([("autogen", True)]),
|
614
600
|
)
|
615
|
-
@telemetry.add_stmt_params_to_df(
|
616
|
-
project=_PROJECT,
|
617
|
-
subproject=_SUBPROJECT,
|
618
|
-
custom_tags=dict([("autogen", True)]),
|
619
|
-
)
|
620
601
|
def predict_proba(
|
621
602
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
622
603
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -657,11 +638,6 @@ class LedoitWolf(BaseTransformer):
|
|
657
638
|
subproject=_SUBPROJECT,
|
658
639
|
custom_tags=dict([("autogen", True)]),
|
659
640
|
)
|
660
|
-
@telemetry.add_stmt_params_to_df(
|
661
|
-
project=_PROJECT,
|
662
|
-
subproject=_SUBPROJECT,
|
663
|
-
custom_tags=dict([("autogen", True)]),
|
664
|
-
)
|
665
641
|
def predict_log_proba(
|
666
642
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
667
643
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -698,16 +674,6 @@ class LedoitWolf(BaseTransformer):
|
|
698
674
|
return output_df
|
699
675
|
|
700
676
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
701
|
-
@telemetry.send_api_usage_telemetry(
|
702
|
-
project=_PROJECT,
|
703
|
-
subproject=_SUBPROJECT,
|
704
|
-
custom_tags=dict([("autogen", True)]),
|
705
|
-
)
|
706
|
-
@telemetry.add_stmt_params_to_df(
|
707
|
-
project=_PROJECT,
|
708
|
-
subproject=_SUBPROJECT,
|
709
|
-
custom_tags=dict([("autogen", True)]),
|
710
|
-
)
|
711
677
|
def decision_function(
|
712
678
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
713
679
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -808,11 +774,6 @@ class LedoitWolf(BaseTransformer):
|
|
808
774
|
subproject=_SUBPROJECT,
|
809
775
|
custom_tags=dict([("autogen", True)]),
|
810
776
|
)
|
811
|
-
@telemetry.add_stmt_params_to_df(
|
812
|
-
project=_PROJECT,
|
813
|
-
subproject=_SUBPROJECT,
|
814
|
-
custom_tags=dict([("autogen", True)]),
|
815
|
-
)
|
816
777
|
def kneighbors(
|
817
778
|
self,
|
818
779
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -872,18 +833,28 @@ class LedoitWolf(BaseTransformer):
|
|
872
833
|
# For classifier, the type of predict is the same as the type of label
|
873
834
|
if self._sklearn_object._estimator_type == 'classifier':
|
874
835
|
# label columns is the desired type for output
|
875
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
836
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
876
837
|
# rename the output columns
|
877
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
838
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
839
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
840
|
+
([] if self._drop_input_cols else inputs)
|
841
|
+
+ outputs)
|
842
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
843
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
844
|
+
# Clusterer returns int64 cluster labels.
|
845
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
846
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
878
847
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
879
848
|
([] if self._drop_input_cols else inputs)
|
880
849
|
+ outputs)
|
850
|
+
|
881
851
|
# For regressor, the type of predict is float64
|
882
852
|
elif self._sklearn_object._estimator_type == 'regressor':
|
883
853
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
884
854
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
885
855
|
([] if self._drop_input_cols else inputs)
|
886
856
|
+ outputs)
|
857
|
+
|
887
858
|
for prob_func in PROB_FUNCTIONS:
|
888
859
|
if hasattr(self, prob_func):
|
889
860
|
output_cols_prefix: str = f"{prob_func}_"
|