snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SpectralEmbedding(BaseTransformer):
57
58
  r"""Spectral embedding for non-linear dimensionality reduction
58
59
  For more details on this class, see [sklearn.manifold.SpectralEmbedding]
@@ -60,6 +61,49 @@ class SpectralEmbedding(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=2
64
108
  The dimension of the projected subspace.
65
109
 
@@ -117,35 +161,6 @@ class SpectralEmbedding(BaseTransformer):
117
161
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
118
162
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
119
163
  for more details.
120
-
121
- input_cols: Optional[Union[str, List[str]]]
122
- A string or list of strings representing column names that contain features.
123
- If this parameter is not specified, all columns in the input DataFrame except
124
- the columns specified by label_cols and sample_weight_col parameters are
125
- considered input columns.
126
-
127
- label_cols: Optional[Union[str, List[str]]]
128
- A string or list of strings representing column names that contain labels.
129
- This is a required param for estimators, as there is no way to infer these
130
- columns. If this parameter is not specified, then object is fitted without
131
- labels (like a transformer).
132
-
133
- output_cols: Optional[Union[str, List[str]]]
134
- A string or list of strings representing column names that will store the
135
- output of predict and transform operations. The length of output_cols must
136
- match the expected number of output columns from the specific estimator or
137
- transformer class used.
138
- If this parameter is not specified, output column names are derived by
139
- adding an OUTPUT_ prefix to the label column names. These inferred output
140
- column names work for estimator's predict() method, but output_cols must
141
- be set explicitly for transformers.
142
-
143
- sample_weight_col: Optional[str]
144
- A string representing the column name containing the sample weights.
145
- This argument is only required when working with weighted datasets.
146
-
147
- drop_input_cols: Optional[bool], default=False
148
- If set, the response of predict(), transform() methods will not contain input columns.
149
164
  """
150
165
 
151
166
  def __init__( # type: ignore[no-untyped-def]
@@ -162,6 +177,7 @@ class SpectralEmbedding(BaseTransformer):
162
177
  input_cols: Optional[Union[str, Iterable[str]]] = None,
163
178
  output_cols: Optional[Union[str, Iterable[str]]] = None,
164
179
  label_cols: Optional[Union[str, Iterable[str]]] = None,
180
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
165
181
  drop_input_cols: Optional[bool] = False,
166
182
  sample_weight_col: Optional[str] = None,
167
183
  ) -> None:
@@ -170,9 +186,10 @@ class SpectralEmbedding(BaseTransformer):
170
186
  self.set_input_cols(input_cols)
171
187
  self.set_output_cols(output_cols)
172
188
  self.set_label_cols(label_cols)
189
+ self.set_passthrough_cols(passthrough_cols)
173
190
  self.set_drop_input_cols(drop_input_cols)
174
191
  self.set_sample_weight_col(sample_weight_col)
175
- deps = set(SklearnWrapperProvider().dependencies)
192
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
176
193
 
177
194
  self._deps = list(deps)
178
195
 
@@ -188,13 +205,14 @@ class SpectralEmbedding(BaseTransformer):
188
205
  args=init_args,
189
206
  klass=sklearn.manifold.SpectralEmbedding
190
207
  )
191
- self._sklearn_object = sklearn.manifold.SpectralEmbedding(
208
+ self._sklearn_object: Any = sklearn.manifold.SpectralEmbedding(
192
209
  **cleaned_up_init_args,
193
210
  )
194
211
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
195
212
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
196
213
  self._snowpark_cols: Optional[List[str]] = self.input_cols
197
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralEmbedding.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
214
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralEmbedding.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
215
+ self._autogenerated = True
198
216
 
199
217
  def _get_rand_id(self) -> str:
200
218
  """
@@ -205,24 +223,6 @@ class SpectralEmbedding(BaseTransformer):
205
223
  """
206
224
  return str(uuid4()).replace("-", "_").upper()
207
225
 
208
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
209
- """
210
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
211
-
212
- Args:
213
- dataset: Input dataset.
214
- """
215
- if not self.input_cols:
216
- cols = [
217
- c for c in dataset.columns
218
- if c not in self.get_label_cols() and c != self.sample_weight_col
219
- ]
220
- self.set_input_cols(input_cols=cols)
221
-
222
- if not self.output_cols:
223
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
224
- self.set_output_cols(output_cols=cols)
225
-
226
226
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SpectralEmbedding":
227
227
  """
228
228
  Input columns setter.
@@ -268,54 +268,48 @@ class SpectralEmbedding(BaseTransformer):
268
268
  self
269
269
  """
270
270
  self._infer_input_output_cols(dataset)
271
- if isinstance(dataset, pd.DataFrame):
272
- assert self._sklearn_object is not None # keep mypy happy
273
- self._sklearn_object = self._handlers.fit_pandas(
274
- dataset,
275
- self._sklearn_object,
276
- self.input_cols,
277
- self.label_cols,
278
- self.sample_weight_col
279
- )
280
- elif isinstance(dataset, DataFrame):
281
- self._fit_snowpark(dataset)
282
- else:
283
- raise TypeError(
284
- f"Unexpected dataset type: {type(dataset)}."
285
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
286
- )
271
+ if isinstance(dataset, DataFrame):
272
+ session = dataset._session
273
+ assert session is not None # keep mypy happy
274
+ # Validate that key package version in user workspace are supported in snowflake conda channel
275
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
276
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
277
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
278
+
279
+ # Specify input columns so column pruning will be enforced
280
+ selected_cols = self._get_active_columns()
281
+ if len(selected_cols) > 0:
282
+ dataset = dataset.select(selected_cols)
283
+
284
+ self._snowpark_cols = dataset.select(self.input_cols).columns
285
+
286
+ # If we are already in a stored procedure, no need to kick off another one.
287
+ if SNOWML_SPROC_ENV in os.environ:
288
+ statement_params = telemetry.get_function_usage_statement_params(
289
+ project=_PROJECT,
290
+ subproject=_SUBPROJECT,
291
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralEmbedding.__class__.__name__),
292
+ api_calls=[Session.call],
293
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
294
+ )
295
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
296
+ pd_df.columns = dataset.columns
297
+ dataset = pd_df
298
+
299
+ model_trainer = ModelTrainerBuilder.build(
300
+ estimator=self._sklearn_object,
301
+ dataset=dataset,
302
+ input_cols=self.input_cols,
303
+ label_cols=self.label_cols,
304
+ sample_weight_col=self.sample_weight_col,
305
+ autogenerated=self._autogenerated,
306
+ subproject=_SUBPROJECT
307
+ )
308
+ self._sklearn_object = model_trainer.train()
287
309
  self._is_fitted = True
288
310
  self._get_model_signatures(dataset)
289
311
  return self
290
312
 
291
- def _fit_snowpark(self, dataset: DataFrame) -> None:
292
- session = dataset._session
293
- assert session is not None # keep mypy happy
294
- # Validate that key package version in user workspace are supported in snowflake conda channel
295
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
296
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
297
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
298
-
299
- # Specify input columns so column pruning will be enforced
300
- selected_cols = self._get_active_columns()
301
- if len(selected_cols) > 0:
302
- dataset = dataset.select(selected_cols)
303
-
304
- estimator = self._sklearn_object
305
- assert estimator is not None # Keep mypy happy
306
-
307
- self._snowpark_cols = dataset.select(self.input_cols).columns
308
-
309
- self._sklearn_object = self._handlers.fit_snowpark(
310
- dataset,
311
- session,
312
- estimator,
313
- ["snowflake-snowpark-python"] + self._get_dependencies(),
314
- self.input_cols,
315
- self.label_cols,
316
- self.sample_weight_col,
317
- )
318
-
319
313
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
320
314
  if self._drop_input_cols:
321
315
  return []
@@ -503,11 +497,6 @@ class SpectralEmbedding(BaseTransformer):
503
497
  subproject=_SUBPROJECT,
504
498
  custom_tags=dict([("autogen", True)]),
505
499
  )
506
- @telemetry.add_stmt_params_to_df(
507
- project=_PROJECT,
508
- subproject=_SUBPROJECT,
509
- custom_tags=dict([("autogen", True)]),
510
- )
511
500
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
512
501
  """Method not supported for this class.
513
502
 
@@ -559,11 +548,6 @@ class SpectralEmbedding(BaseTransformer):
559
548
  subproject=_SUBPROJECT,
560
549
  custom_tags=dict([("autogen", True)]),
561
550
  )
562
- @telemetry.add_stmt_params_to_df(
563
- project=_PROJECT,
564
- subproject=_SUBPROJECT,
565
- custom_tags=dict([("autogen", True)]),
566
- )
567
551
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
568
552
  """Method not supported for this class.
569
553
 
@@ -620,7 +604,8 @@ class SpectralEmbedding(BaseTransformer):
620
604
  if False:
621
605
  self.fit(dataset)
622
606
  assert self._sklearn_object is not None
623
- return self._sklearn_object.labels_
607
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
608
+ return labels
624
609
  else:
625
610
  raise NotImplementedError
626
611
 
@@ -656,6 +641,7 @@ class SpectralEmbedding(BaseTransformer):
656
641
  output_cols = []
657
642
 
658
643
  # Make sure column names are valid snowflake identifiers.
644
+ assert output_cols is not None # Make MyPy happy
659
645
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
660
646
 
661
647
  return rv
@@ -666,11 +652,6 @@ class SpectralEmbedding(BaseTransformer):
666
652
  subproject=_SUBPROJECT,
667
653
  custom_tags=dict([("autogen", True)]),
668
654
  )
669
- @telemetry.add_stmt_params_to_df(
670
- project=_PROJECT,
671
- subproject=_SUBPROJECT,
672
- custom_tags=dict([("autogen", True)]),
673
- )
674
655
  def predict_proba(
675
656
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
676
657
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -711,11 +692,6 @@ class SpectralEmbedding(BaseTransformer):
711
692
  subproject=_SUBPROJECT,
712
693
  custom_tags=dict([("autogen", True)]),
713
694
  )
714
- @telemetry.add_stmt_params_to_df(
715
- project=_PROJECT,
716
- subproject=_SUBPROJECT,
717
- custom_tags=dict([("autogen", True)]),
718
- )
719
695
  def predict_log_proba(
720
696
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
721
697
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -752,16 +728,6 @@ class SpectralEmbedding(BaseTransformer):
752
728
  return output_df
753
729
 
754
730
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
755
- @telemetry.send_api_usage_telemetry(
756
- project=_PROJECT,
757
- subproject=_SUBPROJECT,
758
- custom_tags=dict([("autogen", True)]),
759
- )
760
- @telemetry.add_stmt_params_to_df(
761
- project=_PROJECT,
762
- subproject=_SUBPROJECT,
763
- custom_tags=dict([("autogen", True)]),
764
- )
765
731
  def decision_function(
766
732
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
767
733
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -860,11 +826,6 @@ class SpectralEmbedding(BaseTransformer):
860
826
  subproject=_SUBPROJECT,
861
827
  custom_tags=dict([("autogen", True)]),
862
828
  )
863
- @telemetry.add_stmt_params_to_df(
864
- project=_PROJECT,
865
- subproject=_SUBPROJECT,
866
- custom_tags=dict([("autogen", True)]),
867
- )
868
829
  def kneighbors(
869
830
  self,
870
831
  dataset: Union[DataFrame, pd.DataFrame],
@@ -924,18 +885,28 @@ class SpectralEmbedding(BaseTransformer):
924
885
  # For classifier, the type of predict is the same as the type of label
925
886
  if self._sklearn_object._estimator_type == 'classifier':
926
887
  # label columns is the desired type for output
927
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
888
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
928
889
  # rename the output columns
929
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
890
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
891
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
892
+ ([] if self._drop_input_cols else inputs)
893
+ + outputs)
894
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
895
+ # For outlier models, returns -1 for outliers and 1 for inliers.
896
+ # Clusterer returns int64 cluster labels.
897
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
898
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
930
899
  self._model_signature_dict["predict"] = ModelSignature(inputs,
931
900
  ([] if self._drop_input_cols else inputs)
932
901
  + outputs)
902
+
933
903
  # For regressor, the type of predict is float64
934
904
  elif self._sklearn_object._estimator_type == 'regressor':
935
905
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
936
906
  self._model_signature_dict["predict"] = ModelSignature(inputs,
937
907
  ([] if self._drop_input_cols else inputs)
938
908
  + outputs)
909
+
939
910
  for prob_func in PROB_FUNCTIONS:
940
911
  if hasattr(self, prob_func):
941
912
  output_cols_prefix: str = f"{prob_func}_"