snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MLPClassifier(BaseTransformer):
57
58
  r"""Multi-layer Perceptron classifier
58
59
  For more details on this class, see [sklearn.neural_network.MLPClassifier]
@@ -60,6 +61,51 @@ class MLPClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  hidden_layer_sizes: array-like of shape(n_layers - 2,), default=(100,)
64
110
  The ith element represents the number of neurons in the ith
65
111
  hidden layer.
@@ -209,35 +255,6 @@ class MLPClassifier(BaseTransformer):
209
255
  of iterations reaches max_iter, or this number of loss function calls.
210
256
  Note that number of loss function calls will be greater than or equal
211
257
  to the number of iterations for the `MLPClassifier`.
212
-
213
- input_cols: Optional[Union[str, List[str]]]
214
- A string or list of strings representing column names that contain features.
215
- If this parameter is not specified, all columns in the input DataFrame except
216
- the columns specified by label_cols and sample_weight_col parameters are
217
- considered input columns.
218
-
219
- label_cols: Optional[Union[str, List[str]]]
220
- A string or list of strings representing column names that contain labels.
221
- This is a required param for estimators, as there is no way to infer these
222
- columns. If this parameter is not specified, then object is fitted without
223
- labels (like a transformer).
224
-
225
- output_cols: Optional[Union[str, List[str]]]
226
- A string or list of strings representing column names that will store the
227
- output of predict and transform operations. The length of output_cols must
228
- match the expected number of output columns from the specific estimator or
229
- transformer class used.
230
- If this parameter is not specified, output column names are derived by
231
- adding an OUTPUT_ prefix to the label column names. These inferred output
232
- column names work for estimator's predict() method, but output_cols must
233
- be set explicitly for transformers.
234
-
235
- sample_weight_col: Optional[str]
236
- A string representing the column name containing the sample weights.
237
- This argument is only required when working with weighted datasets.
238
-
239
- drop_input_cols: Optional[bool], default=False
240
- If set, the response of predict(), transform() methods will not contain input columns.
241
258
  """
242
259
 
243
260
  def __init__( # type: ignore[no-untyped-def]
@@ -269,6 +286,7 @@ class MLPClassifier(BaseTransformer):
269
286
  input_cols: Optional[Union[str, Iterable[str]]] = None,
270
287
  output_cols: Optional[Union[str, Iterable[str]]] = None,
271
288
  label_cols: Optional[Union[str, Iterable[str]]] = None,
289
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
272
290
  drop_input_cols: Optional[bool] = False,
273
291
  sample_weight_col: Optional[str] = None,
274
292
  ) -> None:
@@ -277,9 +295,10 @@ class MLPClassifier(BaseTransformer):
277
295
  self.set_input_cols(input_cols)
278
296
  self.set_output_cols(output_cols)
279
297
  self.set_label_cols(label_cols)
298
+ self.set_passthrough_cols(passthrough_cols)
280
299
  self.set_drop_input_cols(drop_input_cols)
281
300
  self.set_sample_weight_col(sample_weight_col)
282
- deps = set(SklearnWrapperProvider().dependencies)
301
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
283
302
 
284
303
  self._deps = list(deps)
285
304
 
@@ -310,13 +329,14 @@ class MLPClassifier(BaseTransformer):
310
329
  args=init_args,
311
330
  klass=sklearn.neural_network.MLPClassifier
312
331
  )
313
- self._sklearn_object = sklearn.neural_network.MLPClassifier(
332
+ self._sklearn_object: Any = sklearn.neural_network.MLPClassifier(
314
333
  **cleaned_up_init_args,
315
334
  )
316
335
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
317
336
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
318
337
  self._snowpark_cols: Optional[List[str]] = self.input_cols
319
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
338
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
339
+ self._autogenerated = True
320
340
 
321
341
  def _get_rand_id(self) -> str:
322
342
  """
@@ -327,24 +347,6 @@ class MLPClassifier(BaseTransformer):
327
347
  """
328
348
  return str(uuid4()).replace("-", "_").upper()
329
349
 
330
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
331
- """
332
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
333
-
334
- Args:
335
- dataset: Input dataset.
336
- """
337
- if not self.input_cols:
338
- cols = [
339
- c for c in dataset.columns
340
- if c not in self.get_label_cols() and c != self.sample_weight_col
341
- ]
342
- self.set_input_cols(input_cols=cols)
343
-
344
- if not self.output_cols:
345
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
346
- self.set_output_cols(output_cols=cols)
347
-
348
350
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MLPClassifier":
349
351
  """
350
352
  Input columns setter.
@@ -390,54 +392,48 @@ class MLPClassifier(BaseTransformer):
390
392
  self
391
393
  """
392
394
  self._infer_input_output_cols(dataset)
393
- if isinstance(dataset, pd.DataFrame):
394
- assert self._sklearn_object is not None # keep mypy happy
395
- self._sklearn_object = self._handlers.fit_pandas(
396
- dataset,
397
- self._sklearn_object,
398
- self.input_cols,
399
- self.label_cols,
400
- self.sample_weight_col
401
- )
402
- elif isinstance(dataset, DataFrame):
403
- self._fit_snowpark(dataset)
404
- else:
405
- raise TypeError(
406
- f"Unexpected dataset type: {type(dataset)}."
407
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
408
- )
395
+ if isinstance(dataset, DataFrame):
396
+ session = dataset._session
397
+ assert session is not None # keep mypy happy
398
+ # Validate that key package version in user workspace are supported in snowflake conda channel
399
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
400
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
401
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
402
+
403
+ # Specify input columns so column pruning will be enforced
404
+ selected_cols = self._get_active_columns()
405
+ if len(selected_cols) > 0:
406
+ dataset = dataset.select(selected_cols)
407
+
408
+ self._snowpark_cols = dataset.select(self.input_cols).columns
409
+
410
+ # If we are already in a stored procedure, no need to kick off another one.
411
+ if SNOWML_SPROC_ENV in os.environ:
412
+ statement_params = telemetry.get_function_usage_statement_params(
413
+ project=_PROJECT,
414
+ subproject=_SUBPROJECT,
415
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MLPClassifier.__class__.__name__),
416
+ api_calls=[Session.call],
417
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
418
+ )
419
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
420
+ pd_df.columns = dataset.columns
421
+ dataset = pd_df
422
+
423
+ model_trainer = ModelTrainerBuilder.build(
424
+ estimator=self._sklearn_object,
425
+ dataset=dataset,
426
+ input_cols=self.input_cols,
427
+ label_cols=self.label_cols,
428
+ sample_weight_col=self.sample_weight_col,
429
+ autogenerated=self._autogenerated,
430
+ subproject=_SUBPROJECT
431
+ )
432
+ self._sklearn_object = model_trainer.train()
409
433
  self._is_fitted = True
410
434
  self._get_model_signatures(dataset)
411
435
  return self
412
436
 
413
- def _fit_snowpark(self, dataset: DataFrame) -> None:
414
- session = dataset._session
415
- assert session is not None # keep mypy happy
416
- # Validate that key package version in user workspace are supported in snowflake conda channel
417
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
418
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
419
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
420
-
421
- # Specify input columns so column pruning will be enforced
422
- selected_cols = self._get_active_columns()
423
- if len(selected_cols) > 0:
424
- dataset = dataset.select(selected_cols)
425
-
426
- estimator = self._sklearn_object
427
- assert estimator is not None # Keep mypy happy
428
-
429
- self._snowpark_cols = dataset.select(self.input_cols).columns
430
-
431
- self._sklearn_object = self._handlers.fit_snowpark(
432
- dataset,
433
- session,
434
- estimator,
435
- ["snowflake-snowpark-python"] + self._get_dependencies(),
436
- self.input_cols,
437
- self.label_cols,
438
- self.sample_weight_col,
439
- )
440
-
441
437
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
442
438
  if self._drop_input_cols:
443
439
  return []
@@ -625,11 +621,6 @@ class MLPClassifier(BaseTransformer):
625
621
  subproject=_SUBPROJECT,
626
622
  custom_tags=dict([("autogen", True)]),
627
623
  )
628
- @telemetry.add_stmt_params_to_df(
629
- project=_PROJECT,
630
- subproject=_SUBPROJECT,
631
- custom_tags=dict([("autogen", True)]),
632
- )
633
624
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
634
625
  """Predict using the multi-layer perceptron classifier
635
626
  For more details on this function, see [sklearn.neural_network.MLPClassifier.predict]
@@ -683,11 +674,6 @@ class MLPClassifier(BaseTransformer):
683
674
  subproject=_SUBPROJECT,
684
675
  custom_tags=dict([("autogen", True)]),
685
676
  )
686
- @telemetry.add_stmt_params_to_df(
687
- project=_PROJECT,
688
- subproject=_SUBPROJECT,
689
- custom_tags=dict([("autogen", True)]),
690
- )
691
677
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
692
678
  """Method not supported for this class.
693
679
 
@@ -744,7 +730,8 @@ class MLPClassifier(BaseTransformer):
744
730
  if False:
745
731
  self.fit(dataset)
746
732
  assert self._sklearn_object is not None
747
- return self._sklearn_object.labels_
733
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
734
+ return labels
748
735
  else:
749
736
  raise NotImplementedError
750
737
 
@@ -780,6 +767,7 @@ class MLPClassifier(BaseTransformer):
780
767
  output_cols = []
781
768
 
782
769
  # Make sure column names are valid snowflake identifiers.
770
+ assert output_cols is not None # Make MyPy happy
783
771
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
784
772
 
785
773
  return rv
@@ -790,11 +778,6 @@ class MLPClassifier(BaseTransformer):
790
778
  subproject=_SUBPROJECT,
791
779
  custom_tags=dict([("autogen", True)]),
792
780
  )
793
- @telemetry.add_stmt_params_to_df(
794
- project=_PROJECT,
795
- subproject=_SUBPROJECT,
796
- custom_tags=dict([("autogen", True)]),
797
- )
798
781
  def predict_proba(
799
782
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
800
783
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -837,11 +820,6 @@ class MLPClassifier(BaseTransformer):
837
820
  subproject=_SUBPROJECT,
838
821
  custom_tags=dict([("autogen", True)]),
839
822
  )
840
- @telemetry.add_stmt_params_to_df(
841
- project=_PROJECT,
842
- subproject=_SUBPROJECT,
843
- custom_tags=dict([("autogen", True)]),
844
- )
845
823
  def predict_log_proba(
846
824
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
847
825
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -880,16 +858,6 @@ class MLPClassifier(BaseTransformer):
880
858
  return output_df
881
859
 
882
860
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
883
- @telemetry.send_api_usage_telemetry(
884
- project=_PROJECT,
885
- subproject=_SUBPROJECT,
886
- custom_tags=dict([("autogen", True)]),
887
- )
888
- @telemetry.add_stmt_params_to_df(
889
- project=_PROJECT,
890
- subproject=_SUBPROJECT,
891
- custom_tags=dict([("autogen", True)]),
892
- )
893
861
  def decision_function(
894
862
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
895
863
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -990,11 +958,6 @@ class MLPClassifier(BaseTransformer):
990
958
  subproject=_SUBPROJECT,
991
959
  custom_tags=dict([("autogen", True)]),
992
960
  )
993
- @telemetry.add_stmt_params_to_df(
994
- project=_PROJECT,
995
- subproject=_SUBPROJECT,
996
- custom_tags=dict([("autogen", True)]),
997
- )
998
961
  def kneighbors(
999
962
  self,
1000
963
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1054,18 +1017,28 @@ class MLPClassifier(BaseTransformer):
1054
1017
  # For classifier, the type of predict is the same as the type of label
1055
1018
  if self._sklearn_object._estimator_type == 'classifier':
1056
1019
  # label columns is the desired type for output
1057
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1020
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1058
1021
  # rename the output columns
1059
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1022
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1060
1023
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1061
1024
  ([] if self._drop_input_cols else inputs)
1062
1025
  + outputs)
1026
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1027
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1028
+ # Clusterer returns int64 cluster labels.
1029
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1030
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1031
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1032
+ ([] if self._drop_input_cols else inputs)
1033
+ + outputs)
1034
+
1063
1035
  # For regressor, the type of predict is float64
1064
1036
  elif self._sklearn_object._estimator_type == 'regressor':
1065
1037
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1066
1038
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1067
1039
  ([] if self._drop_input_cols else inputs)
1068
1040
  + outputs)
1041
+
1069
1042
  for prob_func in PROB_FUNCTIONS:
1070
1043
  if hasattr(self, prob_func):
1071
1044
  output_cols_prefix: str = f"{prob_func}_"