snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MLPClassifier(BaseTransformer):
|
57
58
|
r"""Multi-layer Perceptron classifier
|
58
59
|
For more details on this class, see [sklearn.neural_network.MLPClassifier]
|
@@ -60,6 +61,51 @@ class MLPClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
hidden_layer_sizes: array-like of shape(n_layers - 2,), default=(100,)
|
64
110
|
The ith element represents the number of neurons in the ith
|
65
111
|
hidden layer.
|
@@ -209,35 +255,6 @@ class MLPClassifier(BaseTransformer):
|
|
209
255
|
of iterations reaches max_iter, or this number of loss function calls.
|
210
256
|
Note that number of loss function calls will be greater than or equal
|
211
257
|
to the number of iterations for the `MLPClassifier`.
|
212
|
-
|
213
|
-
input_cols: Optional[Union[str, List[str]]]
|
214
|
-
A string or list of strings representing column names that contain features.
|
215
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
216
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
217
|
-
considered input columns.
|
218
|
-
|
219
|
-
label_cols: Optional[Union[str, List[str]]]
|
220
|
-
A string or list of strings representing column names that contain labels.
|
221
|
-
This is a required param for estimators, as there is no way to infer these
|
222
|
-
columns. If this parameter is not specified, then object is fitted without
|
223
|
-
labels (like a transformer).
|
224
|
-
|
225
|
-
output_cols: Optional[Union[str, List[str]]]
|
226
|
-
A string or list of strings representing column names that will store the
|
227
|
-
output of predict and transform operations. The length of output_cols must
|
228
|
-
match the expected number of output columns from the specific estimator or
|
229
|
-
transformer class used.
|
230
|
-
If this parameter is not specified, output column names are derived by
|
231
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
232
|
-
column names work for estimator's predict() method, but output_cols must
|
233
|
-
be set explicitly for transformers.
|
234
|
-
|
235
|
-
sample_weight_col: Optional[str]
|
236
|
-
A string representing the column name containing the sample weights.
|
237
|
-
This argument is only required when working with weighted datasets.
|
238
|
-
|
239
|
-
drop_input_cols: Optional[bool], default=False
|
240
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
241
258
|
"""
|
242
259
|
|
243
260
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -269,6 +286,7 @@ class MLPClassifier(BaseTransformer):
|
|
269
286
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
270
287
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
271
288
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
289
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
272
290
|
drop_input_cols: Optional[bool] = False,
|
273
291
|
sample_weight_col: Optional[str] = None,
|
274
292
|
) -> None:
|
@@ -277,9 +295,10 @@ class MLPClassifier(BaseTransformer):
|
|
277
295
|
self.set_input_cols(input_cols)
|
278
296
|
self.set_output_cols(output_cols)
|
279
297
|
self.set_label_cols(label_cols)
|
298
|
+
self.set_passthrough_cols(passthrough_cols)
|
280
299
|
self.set_drop_input_cols(drop_input_cols)
|
281
300
|
self.set_sample_weight_col(sample_weight_col)
|
282
|
-
deps = set(
|
301
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
283
302
|
|
284
303
|
self._deps = list(deps)
|
285
304
|
|
@@ -310,13 +329,14 @@ class MLPClassifier(BaseTransformer):
|
|
310
329
|
args=init_args,
|
311
330
|
klass=sklearn.neural_network.MLPClassifier
|
312
331
|
)
|
313
|
-
self._sklearn_object = sklearn.neural_network.MLPClassifier(
|
332
|
+
self._sklearn_object: Any = sklearn.neural_network.MLPClassifier(
|
314
333
|
**cleaned_up_init_args,
|
315
334
|
)
|
316
335
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
317
336
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
318
337
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
319
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
338
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MLPClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
339
|
+
self._autogenerated = True
|
320
340
|
|
321
341
|
def _get_rand_id(self) -> str:
|
322
342
|
"""
|
@@ -327,24 +347,6 @@ class MLPClassifier(BaseTransformer):
|
|
327
347
|
"""
|
328
348
|
return str(uuid4()).replace("-", "_").upper()
|
329
349
|
|
330
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
331
|
-
"""
|
332
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
333
|
-
|
334
|
-
Args:
|
335
|
-
dataset: Input dataset.
|
336
|
-
"""
|
337
|
-
if not self.input_cols:
|
338
|
-
cols = [
|
339
|
-
c for c in dataset.columns
|
340
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
341
|
-
]
|
342
|
-
self.set_input_cols(input_cols=cols)
|
343
|
-
|
344
|
-
if not self.output_cols:
|
345
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
346
|
-
self.set_output_cols(output_cols=cols)
|
347
|
-
|
348
350
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MLPClassifier":
|
349
351
|
"""
|
350
352
|
Input columns setter.
|
@@ -390,54 +392,48 @@ class MLPClassifier(BaseTransformer):
|
|
390
392
|
self
|
391
393
|
"""
|
392
394
|
self._infer_input_output_cols(dataset)
|
393
|
-
if isinstance(dataset,
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
self.
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
408
|
-
|
395
|
+
if isinstance(dataset, DataFrame):
|
396
|
+
session = dataset._session
|
397
|
+
assert session is not None # keep mypy happy
|
398
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
399
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
400
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
401
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
402
|
+
|
403
|
+
# Specify input columns so column pruning will be enforced
|
404
|
+
selected_cols = self._get_active_columns()
|
405
|
+
if len(selected_cols) > 0:
|
406
|
+
dataset = dataset.select(selected_cols)
|
407
|
+
|
408
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
409
|
+
|
410
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
411
|
+
if SNOWML_SPROC_ENV in os.environ:
|
412
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
413
|
+
project=_PROJECT,
|
414
|
+
subproject=_SUBPROJECT,
|
415
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MLPClassifier.__class__.__name__),
|
416
|
+
api_calls=[Session.call],
|
417
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
418
|
+
)
|
419
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
420
|
+
pd_df.columns = dataset.columns
|
421
|
+
dataset = pd_df
|
422
|
+
|
423
|
+
model_trainer = ModelTrainerBuilder.build(
|
424
|
+
estimator=self._sklearn_object,
|
425
|
+
dataset=dataset,
|
426
|
+
input_cols=self.input_cols,
|
427
|
+
label_cols=self.label_cols,
|
428
|
+
sample_weight_col=self.sample_weight_col,
|
429
|
+
autogenerated=self._autogenerated,
|
430
|
+
subproject=_SUBPROJECT
|
431
|
+
)
|
432
|
+
self._sklearn_object = model_trainer.train()
|
409
433
|
self._is_fitted = True
|
410
434
|
self._get_model_signatures(dataset)
|
411
435
|
return self
|
412
436
|
|
413
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
414
|
-
session = dataset._session
|
415
|
-
assert session is not None # keep mypy happy
|
416
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
417
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
418
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
419
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
420
|
-
|
421
|
-
# Specify input columns so column pruning will be enforced
|
422
|
-
selected_cols = self._get_active_columns()
|
423
|
-
if len(selected_cols) > 0:
|
424
|
-
dataset = dataset.select(selected_cols)
|
425
|
-
|
426
|
-
estimator = self._sklearn_object
|
427
|
-
assert estimator is not None # Keep mypy happy
|
428
|
-
|
429
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
430
|
-
|
431
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
432
|
-
dataset,
|
433
|
-
session,
|
434
|
-
estimator,
|
435
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
436
|
-
self.input_cols,
|
437
|
-
self.label_cols,
|
438
|
-
self.sample_weight_col,
|
439
|
-
)
|
440
|
-
|
441
437
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
442
438
|
if self._drop_input_cols:
|
443
439
|
return []
|
@@ -625,11 +621,6 @@ class MLPClassifier(BaseTransformer):
|
|
625
621
|
subproject=_SUBPROJECT,
|
626
622
|
custom_tags=dict([("autogen", True)]),
|
627
623
|
)
|
628
|
-
@telemetry.add_stmt_params_to_df(
|
629
|
-
project=_PROJECT,
|
630
|
-
subproject=_SUBPROJECT,
|
631
|
-
custom_tags=dict([("autogen", True)]),
|
632
|
-
)
|
633
624
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
634
625
|
"""Predict using the multi-layer perceptron classifier
|
635
626
|
For more details on this function, see [sklearn.neural_network.MLPClassifier.predict]
|
@@ -683,11 +674,6 @@ class MLPClassifier(BaseTransformer):
|
|
683
674
|
subproject=_SUBPROJECT,
|
684
675
|
custom_tags=dict([("autogen", True)]),
|
685
676
|
)
|
686
|
-
@telemetry.add_stmt_params_to_df(
|
687
|
-
project=_PROJECT,
|
688
|
-
subproject=_SUBPROJECT,
|
689
|
-
custom_tags=dict([("autogen", True)]),
|
690
|
-
)
|
691
677
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
692
678
|
"""Method not supported for this class.
|
693
679
|
|
@@ -744,7 +730,8 @@ class MLPClassifier(BaseTransformer):
|
|
744
730
|
if False:
|
745
731
|
self.fit(dataset)
|
746
732
|
assert self._sklearn_object is not None
|
747
|
-
|
733
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
734
|
+
return labels
|
748
735
|
else:
|
749
736
|
raise NotImplementedError
|
750
737
|
|
@@ -780,6 +767,7 @@ class MLPClassifier(BaseTransformer):
|
|
780
767
|
output_cols = []
|
781
768
|
|
782
769
|
# Make sure column names are valid snowflake identifiers.
|
770
|
+
assert output_cols is not None # Make MyPy happy
|
783
771
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
784
772
|
|
785
773
|
return rv
|
@@ -790,11 +778,6 @@ class MLPClassifier(BaseTransformer):
|
|
790
778
|
subproject=_SUBPROJECT,
|
791
779
|
custom_tags=dict([("autogen", True)]),
|
792
780
|
)
|
793
|
-
@telemetry.add_stmt_params_to_df(
|
794
|
-
project=_PROJECT,
|
795
|
-
subproject=_SUBPROJECT,
|
796
|
-
custom_tags=dict([("autogen", True)]),
|
797
|
-
)
|
798
781
|
def predict_proba(
|
799
782
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
800
783
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -837,11 +820,6 @@ class MLPClassifier(BaseTransformer):
|
|
837
820
|
subproject=_SUBPROJECT,
|
838
821
|
custom_tags=dict([("autogen", True)]),
|
839
822
|
)
|
840
|
-
@telemetry.add_stmt_params_to_df(
|
841
|
-
project=_PROJECT,
|
842
|
-
subproject=_SUBPROJECT,
|
843
|
-
custom_tags=dict([("autogen", True)]),
|
844
|
-
)
|
845
823
|
def predict_log_proba(
|
846
824
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
847
825
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -880,16 +858,6 @@ class MLPClassifier(BaseTransformer):
|
|
880
858
|
return output_df
|
881
859
|
|
882
860
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
883
|
-
@telemetry.send_api_usage_telemetry(
|
884
|
-
project=_PROJECT,
|
885
|
-
subproject=_SUBPROJECT,
|
886
|
-
custom_tags=dict([("autogen", True)]),
|
887
|
-
)
|
888
|
-
@telemetry.add_stmt_params_to_df(
|
889
|
-
project=_PROJECT,
|
890
|
-
subproject=_SUBPROJECT,
|
891
|
-
custom_tags=dict([("autogen", True)]),
|
892
|
-
)
|
893
861
|
def decision_function(
|
894
862
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
895
863
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -990,11 +958,6 @@ class MLPClassifier(BaseTransformer):
|
|
990
958
|
subproject=_SUBPROJECT,
|
991
959
|
custom_tags=dict([("autogen", True)]),
|
992
960
|
)
|
993
|
-
@telemetry.add_stmt_params_to_df(
|
994
|
-
project=_PROJECT,
|
995
|
-
subproject=_SUBPROJECT,
|
996
|
-
custom_tags=dict([("autogen", True)]),
|
997
|
-
)
|
998
961
|
def kneighbors(
|
999
962
|
self,
|
1000
963
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1054,18 +1017,28 @@ class MLPClassifier(BaseTransformer):
|
|
1054
1017
|
# For classifier, the type of predict is the same as the type of label
|
1055
1018
|
if self._sklearn_object._estimator_type == 'classifier':
|
1056
1019
|
# label columns is the desired type for output
|
1057
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1020
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1058
1021
|
# rename the output columns
|
1059
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1022
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1060
1023
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1061
1024
|
([] if self._drop_input_cols else inputs)
|
1062
1025
|
+ outputs)
|
1026
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1027
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1028
|
+
# Clusterer returns int64 cluster labels.
|
1029
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1030
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1031
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1032
|
+
([] if self._drop_input_cols else inputs)
|
1033
|
+
+ outputs)
|
1034
|
+
|
1063
1035
|
# For regressor, the type of predict is float64
|
1064
1036
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1065
1037
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1066
1038
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1067
1039
|
([] if self._drop_input_cols else inputs)
|
1068
1040
|
+ outputs)
|
1041
|
+
|
1069
1042
|
for prob_func in PROB_FUNCTIONS:
|
1070
1043
|
if hasattr(self, prob_func):
|
1071
1044
|
output_cols_prefix: str = f"{prob_func}_"
|