snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
23
23
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
24
24
  from snowflake.ml._internal import telemetry
25
25
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
26
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
- from snowflake.snowpark import DataFrame
28
+ from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
30
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
30
33
  from snowflake.ml.modeling._internal.estimator_utils import (
31
34
  gather_dependencies,
32
35
  original_estimator_has_callable,
33
36
  transform_snowml_obj_to_sklearn_obj,
34
37
  validate_sklearn_args,
35
38
  )
36
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
37
39
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
40
 
39
41
  from snowflake.ml.model.model_signature import (
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
53
55
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
54
56
 
55
57
 
56
-
57
58
  class SelectKBest(BaseTransformer):
58
59
  r"""Select features according to the k highest scores
59
60
  For more details on this class, see [sklearn.feature_selection.SelectKBest]
@@ -61,44 +62,60 @@ class SelectKBest(BaseTransformer):
61
62
 
62
63
  Parameters
63
64
  ----------
64
- score_func: callable, default=f_classif
65
- Function taking two arrays X and y, and returning a pair of arrays
66
- (scores, pvalues) or a single array with scores.
67
- Default is f_classif (see below "See Also"). The default function only
68
- works with classification tasks.
69
-
70
- k: int or "all", default=10
71
- Number of top features to select.
72
- The "all" option bypasses selection, for use in a parameter search.
73
65
 
74
66
  input_cols: Optional[Union[str, List[str]]]
75
67
  A string or list of strings representing column names that contain features.
76
68
  If this parameter is not specified, all columns in the input DataFrame except
77
- the columns specified by label_cols and sample_weight_col parameters are
78
- considered input columns.
79
-
69
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
70
+ parameters are considered input columns. Input columns can also be set after
71
+ initialization with the `set_input_cols` method.
72
+
80
73
  label_cols: Optional[Union[str, List[str]]]
81
74
  A string or list of strings representing column names that contain labels.
82
- This is a required param for estimators, as there is no way to infer these
83
- columns. If this parameter is not specified, then object is fitted without
84
- labels (like a transformer).
75
+ Label columns must be specified with this parameter during initialization
76
+ or with the `set_label_cols` method before fitting.
85
77
 
86
78
  output_cols: Optional[Union[str, List[str]]]
87
79
  A string or list of strings representing column names that will store the
88
80
  output of predict and transform operations. The length of output_cols must
89
- match the expected number of output columns from the specific estimator or
81
+ match the expected number of output columns from the specific predictor or
90
82
  transformer class used.
91
- If this parameter is not specified, output column names are derived by
92
- adding an OUTPUT_ prefix to the label column names. These inferred output
93
- column names work for estimator's predict() method, but output_cols must
94
- be set explicitly for transformers.
83
+ If you omit this parameter, output column names are derived by adding an
84
+ OUTPUT_ prefix to the label column names for supervised estimators, or
85
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
86
+ work for predictors, but output_cols must be set explicitly for transformers.
87
+ In general, explicitly specifying output column names is clearer, especially
88
+ if you don’t specify the input column names.
89
+ To transform in place, pass the same names for input_cols and output_cols.
90
+ be set explicitly for transformers. Output columns can also be set after
91
+ initialization with the `set_output_cols` method.
95
92
 
96
93
  sample_weight_col: Optional[str]
97
94
  A string representing the column name containing the sample weights.
98
- This argument is only required when working with weighted datasets.
95
+ This argument is only required when working with weighted datasets. Sample
96
+ weight column can also be set after initialization with the
97
+ `set_sample_weight_col` method.
98
+
99
+ passthrough_cols: Optional[Union[str, List[str]]]
100
+ A string or a list of strings indicating column names to be excluded from any
101
+ operations (such as train, transform, or inference). These specified column(s)
102
+ will remain untouched throughout the process. This option is helpful in scenarios
103
+ requiring automatic input_cols inference, but need to avoid using specific
104
+ columns, like index columns, during training or inference. Passthrough columns
105
+ can also be set after initialization with the `set_passthrough_cols` method.
99
106
 
100
107
  drop_input_cols: Optional[bool], default=False
101
108
  If set, the response of predict(), transform() methods will not contain input columns.
109
+
110
+ score_func: callable, default=f_classif
111
+ Function taking two arrays X and y, and returning a pair of arrays
112
+ (scores, pvalues) or a single array with scores.
113
+ Default is f_classif (see below "See Also"). The default function only
114
+ works with classification tasks.
115
+
116
+ k: int or "all", default=10
117
+ Number of top features to select.
118
+ The "all" option bypasses selection, for use in a parameter search.
102
119
  """
103
120
 
104
121
  def __init__( # type: ignore[no-untyped-def]
@@ -109,6 +126,7 @@ class SelectKBest(BaseTransformer):
109
126
  input_cols: Optional[Union[str, Iterable[str]]] = None,
110
127
  output_cols: Optional[Union[str, Iterable[str]]] = None,
111
128
  label_cols: Optional[Union[str, Iterable[str]]] = None,
129
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
112
130
  drop_input_cols: Optional[bool] = False,
113
131
  sample_weight_col: Optional[str] = None,
114
132
  ) -> None:
@@ -117,9 +135,10 @@ class SelectKBest(BaseTransformer):
117
135
  self.set_input_cols(input_cols)
118
136
  self.set_output_cols(output_cols)
119
137
  self.set_label_cols(label_cols)
138
+ self.set_passthrough_cols(passthrough_cols)
120
139
  self.set_drop_input_cols(drop_input_cols)
121
140
  self.set_sample_weight_col(sample_weight_col)
122
- deps = set(SklearnWrapperProvider().dependencies)
141
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
123
142
 
124
143
  self._deps = list(deps)
125
144
 
@@ -129,13 +148,14 @@ class SelectKBest(BaseTransformer):
129
148
  args=init_args,
130
149
  klass=sklearn.feature_selection.SelectKBest
131
150
  )
132
- self._sklearn_object = sklearn.feature_selection.SelectKBest(
151
+ self._sklearn_object: Any = sklearn.feature_selection.SelectKBest(
133
152
  **cleaned_up_init_args,
134
153
  )
135
154
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
136
155
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
137
156
  self._snowpark_cols: Optional[List[str]] = self.input_cols
138
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectKBest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
157
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectKBest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
158
+ self._autogenerated = True
139
159
 
140
160
  def _get_rand_id(self) -> str:
141
161
  """
@@ -146,24 +166,6 @@ class SelectKBest(BaseTransformer):
146
166
  """
147
167
  return str(uuid4()).replace("-", "_").upper()
148
168
 
149
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
150
- """
151
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
152
-
153
- Args:
154
- dataset: Input dataset.
155
- """
156
- if not self.input_cols:
157
- cols = [
158
- c for c in dataset.columns
159
- if c not in self.get_label_cols() and c != self.sample_weight_col
160
- ]
161
- self.set_input_cols(input_cols=cols)
162
-
163
- if not self.output_cols:
164
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
165
- self.set_output_cols(output_cols=cols)
166
-
167
169
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SelectKBest":
168
170
  """
169
171
  Input columns setter.
@@ -209,54 +211,48 @@ class SelectKBest(BaseTransformer):
209
211
  self
210
212
  """
211
213
  self._infer_input_output_cols(dataset)
212
- if isinstance(dataset, pd.DataFrame):
213
- assert self._sklearn_object is not None # keep mypy happy
214
- self._sklearn_object = self._handlers.fit_pandas(
215
- dataset,
216
- self._sklearn_object,
217
- self.input_cols,
218
- self.label_cols,
219
- self.sample_weight_col
220
- )
221
- elif isinstance(dataset, DataFrame):
222
- self._fit_snowpark(dataset)
223
- else:
224
- raise TypeError(
225
- f"Unexpected dataset type: {type(dataset)}."
226
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
227
- )
214
+ if isinstance(dataset, DataFrame):
215
+ session = dataset._session
216
+ assert session is not None # keep mypy happy
217
+ # Validate that key package version in user workspace are supported in snowflake conda channel
218
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
219
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
220
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
221
+
222
+ # Specify input columns so column pruning will be enforced
223
+ selected_cols = self._get_active_columns()
224
+ if len(selected_cols) > 0:
225
+ dataset = dataset.select(selected_cols)
226
+
227
+ self._snowpark_cols = dataset.select(self.input_cols).columns
228
+
229
+ # If we are already in a stored procedure, no need to kick off another one.
230
+ if SNOWML_SPROC_ENV in os.environ:
231
+ statement_params = telemetry.get_function_usage_statement_params(
232
+ project=_PROJECT,
233
+ subproject=_SUBPROJECT,
234
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SelectKBest.__class__.__name__),
235
+ api_calls=[Session.call],
236
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
237
+ )
238
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
239
+ pd_df.columns = dataset.columns
240
+ dataset = pd_df
241
+
242
+ model_trainer = ModelTrainerBuilder.build(
243
+ estimator=self._sklearn_object,
244
+ dataset=dataset,
245
+ input_cols=self.input_cols,
246
+ label_cols=self.label_cols,
247
+ sample_weight_col=self.sample_weight_col,
248
+ autogenerated=self._autogenerated,
249
+ subproject=_SUBPROJECT
250
+ )
251
+ self._sklearn_object = model_trainer.train()
228
252
  self._is_fitted = True
229
253
  self._get_model_signatures(dataset)
230
254
  return self
231
255
 
232
- def _fit_snowpark(self, dataset: DataFrame) -> None:
233
- session = dataset._session
234
- assert session is not None # keep mypy happy
235
- # Validate that key package version in user workspace are supported in snowflake conda channel
236
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
237
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
238
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
239
-
240
- # Specify input columns so column pruning will be enforced
241
- selected_cols = self._get_active_columns()
242
- if len(selected_cols) > 0:
243
- dataset = dataset.select(selected_cols)
244
-
245
- estimator = self._sklearn_object
246
- assert estimator is not None # Keep mypy happy
247
-
248
- self._snowpark_cols = dataset.select(self.input_cols).columns
249
-
250
- self._sklearn_object = self._handlers.fit_snowpark(
251
- dataset,
252
- session,
253
- estimator,
254
- ["snowflake-snowpark-python"] + self._get_dependencies(),
255
- self.input_cols,
256
- self.label_cols,
257
- self.sample_weight_col,
258
- )
259
-
260
256
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
261
257
  if self._drop_input_cols:
262
258
  return []
@@ -444,11 +440,6 @@ class SelectKBest(BaseTransformer):
444
440
  subproject=_SUBPROJECT,
445
441
  custom_tags=dict([("autogen", True)]),
446
442
  )
447
- @telemetry.add_stmt_params_to_df(
448
- project=_PROJECT,
449
- subproject=_SUBPROJECT,
450
- custom_tags=dict([("autogen", True)]),
451
- )
452
443
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
453
444
  """Method not supported for this class.
454
445
 
@@ -500,11 +491,6 @@ class SelectKBest(BaseTransformer):
500
491
  subproject=_SUBPROJECT,
501
492
  custom_tags=dict([("autogen", True)]),
502
493
  )
503
- @telemetry.add_stmt_params_to_df(
504
- project=_PROJECT,
505
- subproject=_SUBPROJECT,
506
- custom_tags=dict([("autogen", True)]),
507
- )
508
494
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
509
495
  """Reduce X to the selected features
510
496
  For more details on this function, see [sklearn.feature_selection.SelectKBest.transform]
@@ -563,7 +549,8 @@ class SelectKBest(BaseTransformer):
563
549
  if False:
564
550
  self.fit(dataset)
565
551
  assert self._sklearn_object is not None
566
- return self._sklearn_object.labels_
552
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
553
+ return labels
567
554
  else:
568
555
  raise NotImplementedError
569
556
 
@@ -599,6 +586,7 @@ class SelectKBest(BaseTransformer):
599
586
  output_cols = []
600
587
 
601
588
  # Make sure column names are valid snowflake identifiers.
589
+ assert output_cols is not None # Make MyPy happy
602
590
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
603
591
 
604
592
  return rv
@@ -609,11 +597,6 @@ class SelectKBest(BaseTransformer):
609
597
  subproject=_SUBPROJECT,
610
598
  custom_tags=dict([("autogen", True)]),
611
599
  )
612
- @telemetry.add_stmt_params_to_df(
613
- project=_PROJECT,
614
- subproject=_SUBPROJECT,
615
- custom_tags=dict([("autogen", True)]),
616
- )
617
600
  def predict_proba(
618
601
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
619
602
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -654,11 +637,6 @@ class SelectKBest(BaseTransformer):
654
637
  subproject=_SUBPROJECT,
655
638
  custom_tags=dict([("autogen", True)]),
656
639
  )
657
- @telemetry.add_stmt_params_to_df(
658
- project=_PROJECT,
659
- subproject=_SUBPROJECT,
660
- custom_tags=dict([("autogen", True)]),
661
- )
662
640
  def predict_log_proba(
663
641
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
664
642
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -695,16 +673,6 @@ class SelectKBest(BaseTransformer):
695
673
  return output_df
696
674
 
697
675
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
698
- @telemetry.send_api_usage_telemetry(
699
- project=_PROJECT,
700
- subproject=_SUBPROJECT,
701
- custom_tags=dict([("autogen", True)]),
702
- )
703
- @telemetry.add_stmt_params_to_df(
704
- project=_PROJECT,
705
- subproject=_SUBPROJECT,
706
- custom_tags=dict([("autogen", True)]),
707
- )
708
676
  def decision_function(
709
677
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
710
678
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -803,11 +771,6 @@ class SelectKBest(BaseTransformer):
803
771
  subproject=_SUBPROJECT,
804
772
  custom_tags=dict([("autogen", True)]),
805
773
  )
806
- @telemetry.add_stmt_params_to_df(
807
- project=_PROJECT,
808
- subproject=_SUBPROJECT,
809
- custom_tags=dict([("autogen", True)]),
810
- )
811
774
  def kneighbors(
812
775
  self,
813
776
  dataset: Union[DataFrame, pd.DataFrame],
@@ -867,18 +830,28 @@ class SelectKBest(BaseTransformer):
867
830
  # For classifier, the type of predict is the same as the type of label
868
831
  if self._sklearn_object._estimator_type == 'classifier':
869
832
  # label columns is the desired type for output
870
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
833
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
871
834
  # rename the output columns
872
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
835
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
836
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
837
+ ([] if self._drop_input_cols else inputs)
838
+ + outputs)
839
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
840
+ # For outlier models, returns -1 for outliers and 1 for inliers.
841
+ # Clusterer returns int64 cluster labels.
842
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
843
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
873
844
  self._model_signature_dict["predict"] = ModelSignature(inputs,
874
845
  ([] if self._drop_input_cols else inputs)
875
846
  + outputs)
847
+
876
848
  # For regressor, the type of predict is float64
877
849
  elif self._sklearn_object._estimator_type == 'regressor':
878
850
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
879
851
  self._model_signature_dict["predict"] = ModelSignature(inputs,
880
852
  ([] if self._drop_input_cols else inputs)
881
853
  + outputs)
854
+
882
855
  for prob_func in PROB_FUNCTIONS:
883
856
  if hasattr(self, prob_func):
884
857
  output_cols_prefix: str = f"{prob_func}_"