snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
|
|
23
23
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
24
24
|
from snowflake.ml._internal import telemetry
|
25
25
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
26
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
|
-
from snowflake.snowpark import DataFrame
|
28
|
+
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
30
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
30
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
31
34
|
gather_dependencies,
|
32
35
|
original_estimator_has_callable,
|
33
36
|
transform_snowml_obj_to_sklearn_obj,
|
34
37
|
validate_sklearn_args,
|
35
38
|
)
|
36
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
37
39
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
38
40
|
|
39
41
|
from snowflake.ml.model.model_signature import (
|
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
|
|
53
55
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
|
54
56
|
|
55
57
|
|
56
|
-
|
57
58
|
class SelectKBest(BaseTransformer):
|
58
59
|
r"""Select features according to the k highest scores
|
59
60
|
For more details on this class, see [sklearn.feature_selection.SelectKBest]
|
@@ -61,44 +62,60 @@ class SelectKBest(BaseTransformer):
|
|
61
62
|
|
62
63
|
Parameters
|
63
64
|
----------
|
64
|
-
score_func: callable, default=f_classif
|
65
|
-
Function taking two arrays X and y, and returning a pair of arrays
|
66
|
-
(scores, pvalues) or a single array with scores.
|
67
|
-
Default is f_classif (see below "See Also"). The default function only
|
68
|
-
works with classification tasks.
|
69
|
-
|
70
|
-
k: int or "all", default=10
|
71
|
-
Number of top features to select.
|
72
|
-
The "all" option bypasses selection, for use in a parameter search.
|
73
65
|
|
74
66
|
input_cols: Optional[Union[str, List[str]]]
|
75
67
|
A string or list of strings representing column names that contain features.
|
76
68
|
If this parameter is not specified, all columns in the input DataFrame except
|
77
|
-
the columns specified by label_cols
|
78
|
-
considered input columns.
|
79
|
-
|
69
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
70
|
+
parameters are considered input columns. Input columns can also be set after
|
71
|
+
initialization with the `set_input_cols` method.
|
72
|
+
|
80
73
|
label_cols: Optional[Union[str, List[str]]]
|
81
74
|
A string or list of strings representing column names that contain labels.
|
82
|
-
|
83
|
-
|
84
|
-
labels (like a transformer).
|
75
|
+
Label columns must be specified with this parameter during initialization
|
76
|
+
or with the `set_label_cols` method before fitting.
|
85
77
|
|
86
78
|
output_cols: Optional[Union[str, List[str]]]
|
87
79
|
A string or list of strings representing column names that will store the
|
88
80
|
output of predict and transform operations. The length of output_cols must
|
89
|
-
match the expected number of output columns from the specific
|
81
|
+
match the expected number of output columns from the specific predictor or
|
90
82
|
transformer class used.
|
91
|
-
If this parameter
|
92
|
-
|
93
|
-
|
94
|
-
be set explicitly for transformers.
|
83
|
+
If you omit this parameter, output column names are derived by adding an
|
84
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
85
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
86
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
87
|
+
In general, explicitly specifying output column names is clearer, especially
|
88
|
+
if you don’t specify the input column names.
|
89
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
90
|
+
be set explicitly for transformers. Output columns can also be set after
|
91
|
+
initialization with the `set_output_cols` method.
|
95
92
|
|
96
93
|
sample_weight_col: Optional[str]
|
97
94
|
A string representing the column name containing the sample weights.
|
98
|
-
This argument is only required when working with weighted datasets.
|
95
|
+
This argument is only required when working with weighted datasets. Sample
|
96
|
+
weight column can also be set after initialization with the
|
97
|
+
`set_sample_weight_col` method.
|
98
|
+
|
99
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
100
|
+
A string or a list of strings indicating column names to be excluded from any
|
101
|
+
operations (such as train, transform, or inference). These specified column(s)
|
102
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
103
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
104
|
+
columns, like index columns, during training or inference. Passthrough columns
|
105
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
99
106
|
|
100
107
|
drop_input_cols: Optional[bool], default=False
|
101
108
|
If set, the response of predict(), transform() methods will not contain input columns.
|
109
|
+
|
110
|
+
score_func: callable, default=f_classif
|
111
|
+
Function taking two arrays X and y, and returning a pair of arrays
|
112
|
+
(scores, pvalues) or a single array with scores.
|
113
|
+
Default is f_classif (see below "See Also"). The default function only
|
114
|
+
works with classification tasks.
|
115
|
+
|
116
|
+
k: int or "all", default=10
|
117
|
+
Number of top features to select.
|
118
|
+
The "all" option bypasses selection, for use in a parameter search.
|
102
119
|
"""
|
103
120
|
|
104
121
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -109,6 +126,7 @@ class SelectKBest(BaseTransformer):
|
|
109
126
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
110
127
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
111
128
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
129
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
112
130
|
drop_input_cols: Optional[bool] = False,
|
113
131
|
sample_weight_col: Optional[str] = None,
|
114
132
|
) -> None:
|
@@ -117,9 +135,10 @@ class SelectKBest(BaseTransformer):
|
|
117
135
|
self.set_input_cols(input_cols)
|
118
136
|
self.set_output_cols(output_cols)
|
119
137
|
self.set_label_cols(label_cols)
|
138
|
+
self.set_passthrough_cols(passthrough_cols)
|
120
139
|
self.set_drop_input_cols(drop_input_cols)
|
121
140
|
self.set_sample_weight_col(sample_weight_col)
|
122
|
-
deps = set(
|
141
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
123
142
|
|
124
143
|
self._deps = list(deps)
|
125
144
|
|
@@ -129,13 +148,14 @@ class SelectKBest(BaseTransformer):
|
|
129
148
|
args=init_args,
|
130
149
|
klass=sklearn.feature_selection.SelectKBest
|
131
150
|
)
|
132
|
-
self._sklearn_object = sklearn.feature_selection.SelectKBest(
|
151
|
+
self._sklearn_object: Any = sklearn.feature_selection.SelectKBest(
|
133
152
|
**cleaned_up_init_args,
|
134
153
|
)
|
135
154
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
136
155
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
137
156
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
138
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectKBest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
157
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectKBest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
158
|
+
self._autogenerated = True
|
139
159
|
|
140
160
|
def _get_rand_id(self) -> str:
|
141
161
|
"""
|
@@ -146,24 +166,6 @@ class SelectKBest(BaseTransformer):
|
|
146
166
|
"""
|
147
167
|
return str(uuid4()).replace("-", "_").upper()
|
148
168
|
|
149
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
150
|
-
"""
|
151
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
152
|
-
|
153
|
-
Args:
|
154
|
-
dataset: Input dataset.
|
155
|
-
"""
|
156
|
-
if not self.input_cols:
|
157
|
-
cols = [
|
158
|
-
c for c in dataset.columns
|
159
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
160
|
-
]
|
161
|
-
self.set_input_cols(input_cols=cols)
|
162
|
-
|
163
|
-
if not self.output_cols:
|
164
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
165
|
-
self.set_output_cols(output_cols=cols)
|
166
|
-
|
167
169
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SelectKBest":
|
168
170
|
"""
|
169
171
|
Input columns setter.
|
@@ -209,54 +211,48 @@ class SelectKBest(BaseTransformer):
|
|
209
211
|
self
|
210
212
|
"""
|
211
213
|
self._infer_input_output_cols(dataset)
|
212
|
-
if isinstance(dataset,
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
self.
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
214
|
+
if isinstance(dataset, DataFrame):
|
215
|
+
session = dataset._session
|
216
|
+
assert session is not None # keep mypy happy
|
217
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
218
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
219
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
220
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
221
|
+
|
222
|
+
# Specify input columns so column pruning will be enforced
|
223
|
+
selected_cols = self._get_active_columns()
|
224
|
+
if len(selected_cols) > 0:
|
225
|
+
dataset = dataset.select(selected_cols)
|
226
|
+
|
227
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
228
|
+
|
229
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
230
|
+
if SNOWML_SPROC_ENV in os.environ:
|
231
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
232
|
+
project=_PROJECT,
|
233
|
+
subproject=_SUBPROJECT,
|
234
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SelectKBest.__class__.__name__),
|
235
|
+
api_calls=[Session.call],
|
236
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
237
|
+
)
|
238
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
239
|
+
pd_df.columns = dataset.columns
|
240
|
+
dataset = pd_df
|
241
|
+
|
242
|
+
model_trainer = ModelTrainerBuilder.build(
|
243
|
+
estimator=self._sklearn_object,
|
244
|
+
dataset=dataset,
|
245
|
+
input_cols=self.input_cols,
|
246
|
+
label_cols=self.label_cols,
|
247
|
+
sample_weight_col=self.sample_weight_col,
|
248
|
+
autogenerated=self._autogenerated,
|
249
|
+
subproject=_SUBPROJECT
|
250
|
+
)
|
251
|
+
self._sklearn_object = model_trainer.train()
|
228
252
|
self._is_fitted = True
|
229
253
|
self._get_model_signatures(dataset)
|
230
254
|
return self
|
231
255
|
|
232
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
233
|
-
session = dataset._session
|
234
|
-
assert session is not None # keep mypy happy
|
235
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
236
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
237
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
238
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
239
|
-
|
240
|
-
# Specify input columns so column pruning will be enforced
|
241
|
-
selected_cols = self._get_active_columns()
|
242
|
-
if len(selected_cols) > 0:
|
243
|
-
dataset = dataset.select(selected_cols)
|
244
|
-
|
245
|
-
estimator = self._sklearn_object
|
246
|
-
assert estimator is not None # Keep mypy happy
|
247
|
-
|
248
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
249
|
-
|
250
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
251
|
-
dataset,
|
252
|
-
session,
|
253
|
-
estimator,
|
254
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
255
|
-
self.input_cols,
|
256
|
-
self.label_cols,
|
257
|
-
self.sample_weight_col,
|
258
|
-
)
|
259
|
-
|
260
256
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
261
257
|
if self._drop_input_cols:
|
262
258
|
return []
|
@@ -444,11 +440,6 @@ class SelectKBest(BaseTransformer):
|
|
444
440
|
subproject=_SUBPROJECT,
|
445
441
|
custom_tags=dict([("autogen", True)]),
|
446
442
|
)
|
447
|
-
@telemetry.add_stmt_params_to_df(
|
448
|
-
project=_PROJECT,
|
449
|
-
subproject=_SUBPROJECT,
|
450
|
-
custom_tags=dict([("autogen", True)]),
|
451
|
-
)
|
452
443
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
453
444
|
"""Method not supported for this class.
|
454
445
|
|
@@ -500,11 +491,6 @@ class SelectKBest(BaseTransformer):
|
|
500
491
|
subproject=_SUBPROJECT,
|
501
492
|
custom_tags=dict([("autogen", True)]),
|
502
493
|
)
|
503
|
-
@telemetry.add_stmt_params_to_df(
|
504
|
-
project=_PROJECT,
|
505
|
-
subproject=_SUBPROJECT,
|
506
|
-
custom_tags=dict([("autogen", True)]),
|
507
|
-
)
|
508
494
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
509
495
|
"""Reduce X to the selected features
|
510
496
|
For more details on this function, see [sklearn.feature_selection.SelectKBest.transform]
|
@@ -563,7 +549,8 @@ class SelectKBest(BaseTransformer):
|
|
563
549
|
if False:
|
564
550
|
self.fit(dataset)
|
565
551
|
assert self._sklearn_object is not None
|
566
|
-
|
552
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
553
|
+
return labels
|
567
554
|
else:
|
568
555
|
raise NotImplementedError
|
569
556
|
|
@@ -599,6 +586,7 @@ class SelectKBest(BaseTransformer):
|
|
599
586
|
output_cols = []
|
600
587
|
|
601
588
|
# Make sure column names are valid snowflake identifiers.
|
589
|
+
assert output_cols is not None # Make MyPy happy
|
602
590
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
603
591
|
|
604
592
|
return rv
|
@@ -609,11 +597,6 @@ class SelectKBest(BaseTransformer):
|
|
609
597
|
subproject=_SUBPROJECT,
|
610
598
|
custom_tags=dict([("autogen", True)]),
|
611
599
|
)
|
612
|
-
@telemetry.add_stmt_params_to_df(
|
613
|
-
project=_PROJECT,
|
614
|
-
subproject=_SUBPROJECT,
|
615
|
-
custom_tags=dict([("autogen", True)]),
|
616
|
-
)
|
617
600
|
def predict_proba(
|
618
601
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
619
602
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -654,11 +637,6 @@ class SelectKBest(BaseTransformer):
|
|
654
637
|
subproject=_SUBPROJECT,
|
655
638
|
custom_tags=dict([("autogen", True)]),
|
656
639
|
)
|
657
|
-
@telemetry.add_stmt_params_to_df(
|
658
|
-
project=_PROJECT,
|
659
|
-
subproject=_SUBPROJECT,
|
660
|
-
custom_tags=dict([("autogen", True)]),
|
661
|
-
)
|
662
640
|
def predict_log_proba(
|
663
641
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
664
642
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -695,16 +673,6 @@ class SelectKBest(BaseTransformer):
|
|
695
673
|
return output_df
|
696
674
|
|
697
675
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
698
|
-
@telemetry.send_api_usage_telemetry(
|
699
|
-
project=_PROJECT,
|
700
|
-
subproject=_SUBPROJECT,
|
701
|
-
custom_tags=dict([("autogen", True)]),
|
702
|
-
)
|
703
|
-
@telemetry.add_stmt_params_to_df(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
676
|
def decision_function(
|
709
677
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
710
678
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -803,11 +771,6 @@ class SelectKBest(BaseTransformer):
|
|
803
771
|
subproject=_SUBPROJECT,
|
804
772
|
custom_tags=dict([("autogen", True)]),
|
805
773
|
)
|
806
|
-
@telemetry.add_stmt_params_to_df(
|
807
|
-
project=_PROJECT,
|
808
|
-
subproject=_SUBPROJECT,
|
809
|
-
custom_tags=dict([("autogen", True)]),
|
810
|
-
)
|
811
774
|
def kneighbors(
|
812
775
|
self,
|
813
776
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -867,18 +830,28 @@ class SelectKBest(BaseTransformer):
|
|
867
830
|
# For classifier, the type of predict is the same as the type of label
|
868
831
|
if self._sklearn_object._estimator_type == 'classifier':
|
869
832
|
# label columns is the desired type for output
|
870
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
833
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
871
834
|
# rename the output columns
|
872
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
835
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
836
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
837
|
+
([] if self._drop_input_cols else inputs)
|
838
|
+
+ outputs)
|
839
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
840
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
841
|
+
# Clusterer returns int64 cluster labels.
|
842
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
843
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
873
844
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
874
845
|
([] if self._drop_input_cols else inputs)
|
875
846
|
+ outputs)
|
847
|
+
|
876
848
|
# For regressor, the type of predict is float64
|
877
849
|
elif self._sklearn_object._estimator_type == 'regressor':
|
878
850
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
879
851
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
880
852
|
([] if self._drop_input_cols else inputs)
|
881
853
|
+ outputs)
|
854
|
+
|
882
855
|
for prob_func in PROB_FUNCTIONS:
|
883
856
|
if hasattr(self, prob_func):
|
884
857
|
output_cols_prefix: str = f"{prob_func}_"
|