snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MiniBatchSparsePCA(BaseTransformer):
57
58
  r"""Mini-batch Sparse Principal Components Analysis
58
59
  For more details on this class, see [sklearn.decomposition.MiniBatchSparsePCA]
@@ -60,6 +61,49 @@ class MiniBatchSparsePCA(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=None
64
108
  Number of sparse atoms to extract. If None, then ``n_components``
65
109
  is set to ``n_features``.
@@ -126,35 +170,6 @@ class MiniBatchSparsePCA(BaseTransformer):
126
170
 
127
171
  To disable convergence detection based on cost function, set
128
172
  `max_no_improvement` to `None`.
129
-
130
- input_cols: Optional[Union[str, List[str]]]
131
- A string or list of strings representing column names that contain features.
132
- If this parameter is not specified, all columns in the input DataFrame except
133
- the columns specified by label_cols and sample_weight_col parameters are
134
- considered input columns.
135
-
136
- label_cols: Optional[Union[str, List[str]]]
137
- A string or list of strings representing column names that contain labels.
138
- This is a required param for estimators, as there is no way to infer these
139
- columns. If this parameter is not specified, then object is fitted without
140
- labels (like a transformer).
141
-
142
- output_cols: Optional[Union[str, List[str]]]
143
- A string or list of strings representing column names that will store the
144
- output of predict and transform operations. The length of output_cols must
145
- match the expected number of output columns from the specific estimator or
146
- transformer class used.
147
- If this parameter is not specified, output column names are derived by
148
- adding an OUTPUT_ prefix to the label column names. These inferred output
149
- column names work for estimator's predict() method, but output_cols must
150
- be set explicitly for transformers.
151
-
152
- sample_weight_col: Optional[str]
153
- A string representing the column name containing the sample weights.
154
- This argument is only required when working with weighted datasets.
155
-
156
- drop_input_cols: Optional[bool], default=False
157
- If set, the response of predict(), transform() methods will not contain input columns.
158
173
  """
159
174
 
160
175
  def __init__( # type: ignore[no-untyped-def]
@@ -177,6 +192,7 @@ class MiniBatchSparsePCA(BaseTransformer):
177
192
  input_cols: Optional[Union[str, Iterable[str]]] = None,
178
193
  output_cols: Optional[Union[str, Iterable[str]]] = None,
179
194
  label_cols: Optional[Union[str, Iterable[str]]] = None,
195
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
180
196
  drop_input_cols: Optional[bool] = False,
181
197
  sample_weight_col: Optional[str] = None,
182
198
  ) -> None:
@@ -185,9 +201,10 @@ class MiniBatchSparsePCA(BaseTransformer):
185
201
  self.set_input_cols(input_cols)
186
202
  self.set_output_cols(output_cols)
187
203
  self.set_label_cols(label_cols)
204
+ self.set_passthrough_cols(passthrough_cols)
188
205
  self.set_drop_input_cols(drop_input_cols)
189
206
  self.set_sample_weight_col(sample_weight_col)
190
- deps = set(SklearnWrapperProvider().dependencies)
207
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
191
208
 
192
209
  self._deps = list(deps)
193
210
 
@@ -209,13 +226,14 @@ class MiniBatchSparsePCA(BaseTransformer):
209
226
  args=init_args,
210
227
  klass=sklearn.decomposition.MiniBatchSparsePCA
211
228
  )
212
- self._sklearn_object = sklearn.decomposition.MiniBatchSparsePCA(
229
+ self._sklearn_object: Any = sklearn.decomposition.MiniBatchSparsePCA(
213
230
  **cleaned_up_init_args,
214
231
  )
215
232
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
216
233
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
217
234
  self._snowpark_cols: Optional[List[str]] = self.input_cols
218
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchSparsePCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
235
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchSparsePCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
236
+ self._autogenerated = True
219
237
 
220
238
  def _get_rand_id(self) -> str:
221
239
  """
@@ -226,24 +244,6 @@ class MiniBatchSparsePCA(BaseTransformer):
226
244
  """
227
245
  return str(uuid4()).replace("-", "_").upper()
228
246
 
229
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
230
- """
231
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
232
-
233
- Args:
234
- dataset: Input dataset.
235
- """
236
- if not self.input_cols:
237
- cols = [
238
- c for c in dataset.columns
239
- if c not in self.get_label_cols() and c != self.sample_weight_col
240
- ]
241
- self.set_input_cols(input_cols=cols)
242
-
243
- if not self.output_cols:
244
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
245
- self.set_output_cols(output_cols=cols)
246
-
247
247
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MiniBatchSparsePCA":
248
248
  """
249
249
  Input columns setter.
@@ -289,54 +289,48 @@ class MiniBatchSparsePCA(BaseTransformer):
289
289
  self
290
290
  """
291
291
  self._infer_input_output_cols(dataset)
292
- if isinstance(dataset, pd.DataFrame):
293
- assert self._sklearn_object is not None # keep mypy happy
294
- self._sklearn_object = self._handlers.fit_pandas(
295
- dataset,
296
- self._sklearn_object,
297
- self.input_cols,
298
- self.label_cols,
299
- self.sample_weight_col
300
- )
301
- elif isinstance(dataset, DataFrame):
302
- self._fit_snowpark(dataset)
303
- else:
304
- raise TypeError(
305
- f"Unexpected dataset type: {type(dataset)}."
306
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
307
- )
292
+ if isinstance(dataset, DataFrame):
293
+ session = dataset._session
294
+ assert session is not None # keep mypy happy
295
+ # Validate that key package version in user workspace are supported in snowflake conda channel
296
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
297
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
298
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
299
+
300
+ # Specify input columns so column pruning will be enforced
301
+ selected_cols = self._get_active_columns()
302
+ if len(selected_cols) > 0:
303
+ dataset = dataset.select(selected_cols)
304
+
305
+ self._snowpark_cols = dataset.select(self.input_cols).columns
306
+
307
+ # If we are already in a stored procedure, no need to kick off another one.
308
+ if SNOWML_SPROC_ENV in os.environ:
309
+ statement_params = telemetry.get_function_usage_statement_params(
310
+ project=_PROJECT,
311
+ subproject=_SUBPROJECT,
312
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchSparsePCA.__class__.__name__),
313
+ api_calls=[Session.call],
314
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
315
+ )
316
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
317
+ pd_df.columns = dataset.columns
318
+ dataset = pd_df
319
+
320
+ model_trainer = ModelTrainerBuilder.build(
321
+ estimator=self._sklearn_object,
322
+ dataset=dataset,
323
+ input_cols=self.input_cols,
324
+ label_cols=self.label_cols,
325
+ sample_weight_col=self.sample_weight_col,
326
+ autogenerated=self._autogenerated,
327
+ subproject=_SUBPROJECT
328
+ )
329
+ self._sklearn_object = model_trainer.train()
308
330
  self._is_fitted = True
309
331
  self._get_model_signatures(dataset)
310
332
  return self
311
333
 
312
- def _fit_snowpark(self, dataset: DataFrame) -> None:
313
- session = dataset._session
314
- assert session is not None # keep mypy happy
315
- # Validate that key package version in user workspace are supported in snowflake conda channel
316
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
317
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
318
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
319
-
320
- # Specify input columns so column pruning will be enforced
321
- selected_cols = self._get_active_columns()
322
- if len(selected_cols) > 0:
323
- dataset = dataset.select(selected_cols)
324
-
325
- estimator = self._sklearn_object
326
- assert estimator is not None # Keep mypy happy
327
-
328
- self._snowpark_cols = dataset.select(self.input_cols).columns
329
-
330
- self._sklearn_object = self._handlers.fit_snowpark(
331
- dataset,
332
- session,
333
- estimator,
334
- ["snowflake-snowpark-python"] + self._get_dependencies(),
335
- self.input_cols,
336
- self.label_cols,
337
- self.sample_weight_col,
338
- )
339
-
340
334
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
341
335
  if self._drop_input_cols:
342
336
  return []
@@ -524,11 +518,6 @@ class MiniBatchSparsePCA(BaseTransformer):
524
518
  subproject=_SUBPROJECT,
525
519
  custom_tags=dict([("autogen", True)]),
526
520
  )
527
- @telemetry.add_stmt_params_to_df(
528
- project=_PROJECT,
529
- subproject=_SUBPROJECT,
530
- custom_tags=dict([("autogen", True)]),
531
- )
532
521
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
533
522
  """Method not supported for this class.
534
523
 
@@ -580,11 +569,6 @@ class MiniBatchSparsePCA(BaseTransformer):
580
569
  subproject=_SUBPROJECT,
581
570
  custom_tags=dict([("autogen", True)]),
582
571
  )
583
- @telemetry.add_stmt_params_to_df(
584
- project=_PROJECT,
585
- subproject=_SUBPROJECT,
586
- custom_tags=dict([("autogen", True)]),
587
- )
588
572
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
589
573
  """Least Squares projection of the data onto the sparse components
590
574
  For more details on this function, see [sklearn.decomposition.MiniBatchSparsePCA.transform]
@@ -643,7 +627,8 @@ class MiniBatchSparsePCA(BaseTransformer):
643
627
  if False:
644
628
  self.fit(dataset)
645
629
  assert self._sklearn_object is not None
646
- return self._sklearn_object.labels_
630
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
631
+ return labels
647
632
  else:
648
633
  raise NotImplementedError
649
634
 
@@ -679,6 +664,7 @@ class MiniBatchSparsePCA(BaseTransformer):
679
664
  output_cols = []
680
665
 
681
666
  # Make sure column names are valid snowflake identifiers.
667
+ assert output_cols is not None # Make MyPy happy
682
668
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
683
669
 
684
670
  return rv
@@ -689,11 +675,6 @@ class MiniBatchSparsePCA(BaseTransformer):
689
675
  subproject=_SUBPROJECT,
690
676
  custom_tags=dict([("autogen", True)]),
691
677
  )
692
- @telemetry.add_stmt_params_to_df(
693
- project=_PROJECT,
694
- subproject=_SUBPROJECT,
695
- custom_tags=dict([("autogen", True)]),
696
- )
697
678
  def predict_proba(
698
679
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
699
680
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -734,11 +715,6 @@ class MiniBatchSparsePCA(BaseTransformer):
734
715
  subproject=_SUBPROJECT,
735
716
  custom_tags=dict([("autogen", True)]),
736
717
  )
737
- @telemetry.add_stmt_params_to_df(
738
- project=_PROJECT,
739
- subproject=_SUBPROJECT,
740
- custom_tags=dict([("autogen", True)]),
741
- )
742
718
  def predict_log_proba(
743
719
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
744
720
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -775,16 +751,6 @@ class MiniBatchSparsePCA(BaseTransformer):
775
751
  return output_df
776
752
 
777
753
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
778
- @telemetry.send_api_usage_telemetry(
779
- project=_PROJECT,
780
- subproject=_SUBPROJECT,
781
- custom_tags=dict([("autogen", True)]),
782
- )
783
- @telemetry.add_stmt_params_to_df(
784
- project=_PROJECT,
785
- subproject=_SUBPROJECT,
786
- custom_tags=dict([("autogen", True)]),
787
- )
788
754
  def decision_function(
789
755
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
790
756
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -883,11 +849,6 @@ class MiniBatchSparsePCA(BaseTransformer):
883
849
  subproject=_SUBPROJECT,
884
850
  custom_tags=dict([("autogen", True)]),
885
851
  )
886
- @telemetry.add_stmt_params_to_df(
887
- project=_PROJECT,
888
- subproject=_SUBPROJECT,
889
- custom_tags=dict([("autogen", True)]),
890
- )
891
852
  def kneighbors(
892
853
  self,
893
854
  dataset: Union[DataFrame, pd.DataFrame],
@@ -947,18 +908,28 @@ class MiniBatchSparsePCA(BaseTransformer):
947
908
  # For classifier, the type of predict is the same as the type of label
948
909
  if self._sklearn_object._estimator_type == 'classifier':
949
910
  # label columns is the desired type for output
950
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
911
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
951
912
  # rename the output columns
952
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
913
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
914
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
915
+ ([] if self._drop_input_cols else inputs)
916
+ + outputs)
917
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
918
+ # For outlier models, returns -1 for outliers and 1 for inliers.
919
+ # Clusterer returns int64 cluster labels.
920
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
921
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
953
922
  self._model_signature_dict["predict"] = ModelSignature(inputs,
954
923
  ([] if self._drop_input_cols else inputs)
955
924
  + outputs)
925
+
956
926
  # For regressor, the type of predict is float64
957
927
  elif self._sklearn_object._estimator_type == 'regressor':
958
928
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
959
929
  self._model_signature_dict["predict"] = ModelSignature(inputs,
960
930
  ([] if self._drop_input_cols else inputs)
961
931
  + outputs)
932
+
962
933
  for prob_func in PROB_FUNCTIONS:
963
934
  if hasattr(self, prob_func):
964
935
  output_cols_prefix: str = f"{prob_func}_"