snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RadiusNeighborsRegressor(BaseTransformer):
57
58
  r"""Regression based on neighbors within a fixed radius
58
59
  For more details on this class, see [sklearn.neighbors.RadiusNeighborsRegressor]
@@ -60,6 +61,51 @@ class RadiusNeighborsRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  radius: float, default=1.0
64
110
  Range of parameter space to use by default for :meth:`radius_neighbors`
65
111
  queries.
@@ -127,35 +173,6 @@ class RadiusNeighborsRegressor(BaseTransformer):
127
173
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
128
174
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
129
175
  for more details.
130
-
131
- input_cols: Optional[Union[str, List[str]]]
132
- A string or list of strings representing column names that contain features.
133
- If this parameter is not specified, all columns in the input DataFrame except
134
- the columns specified by label_cols and sample_weight_col parameters are
135
- considered input columns.
136
-
137
- label_cols: Optional[Union[str, List[str]]]
138
- A string or list of strings representing column names that contain labels.
139
- This is a required param for estimators, as there is no way to infer these
140
- columns. If this parameter is not specified, then object is fitted without
141
- labels (like a transformer).
142
-
143
- output_cols: Optional[Union[str, List[str]]]
144
- A string or list of strings representing column names that will store the
145
- output of predict and transform operations. The length of output_cols must
146
- match the expected number of output columns from the specific estimator or
147
- transformer class used.
148
- If this parameter is not specified, output column names are derived by
149
- adding an OUTPUT_ prefix to the label column names. These inferred output
150
- column names work for estimator's predict() method, but output_cols must
151
- be set explicitly for transformers.
152
-
153
- sample_weight_col: Optional[str]
154
- A string representing the column name containing the sample weights.
155
- This argument is only required when working with weighted datasets.
156
-
157
- drop_input_cols: Optional[bool], default=False
158
- If set, the response of predict(), transform() methods will not contain input columns.
159
176
  """
160
177
 
161
178
  def __init__( # type: ignore[no-untyped-def]
@@ -172,6 +189,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
172
189
  input_cols: Optional[Union[str, Iterable[str]]] = None,
173
190
  output_cols: Optional[Union[str, Iterable[str]]] = None,
174
191
  label_cols: Optional[Union[str, Iterable[str]]] = None,
192
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
175
193
  drop_input_cols: Optional[bool] = False,
176
194
  sample_weight_col: Optional[str] = None,
177
195
  ) -> None:
@@ -180,9 +198,10 @@ class RadiusNeighborsRegressor(BaseTransformer):
180
198
  self.set_input_cols(input_cols)
181
199
  self.set_output_cols(output_cols)
182
200
  self.set_label_cols(label_cols)
201
+ self.set_passthrough_cols(passthrough_cols)
183
202
  self.set_drop_input_cols(drop_input_cols)
184
203
  self.set_sample_weight_col(sample_weight_col)
185
- deps = set(SklearnWrapperProvider().dependencies)
204
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
186
205
 
187
206
  self._deps = list(deps)
188
207
 
@@ -198,13 +217,14 @@ class RadiusNeighborsRegressor(BaseTransformer):
198
217
  args=init_args,
199
218
  klass=sklearn.neighbors.RadiusNeighborsRegressor
200
219
  )
201
- self._sklearn_object = sklearn.neighbors.RadiusNeighborsRegressor(
220
+ self._sklearn_object: Any = sklearn.neighbors.RadiusNeighborsRegressor(
202
221
  **cleaned_up_init_args,
203
222
  )
204
223
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
205
224
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
206
225
  self._snowpark_cols: Optional[List[str]] = self.input_cols
207
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
226
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
227
+ self._autogenerated = True
208
228
 
209
229
  def _get_rand_id(self) -> str:
210
230
  """
@@ -215,24 +235,6 @@ class RadiusNeighborsRegressor(BaseTransformer):
215
235
  """
216
236
  return str(uuid4()).replace("-", "_").upper()
217
237
 
218
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
219
- """
220
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
221
-
222
- Args:
223
- dataset: Input dataset.
224
- """
225
- if not self.input_cols:
226
- cols = [
227
- c for c in dataset.columns
228
- if c not in self.get_label_cols() and c != self.sample_weight_col
229
- ]
230
- self.set_input_cols(input_cols=cols)
231
-
232
- if not self.output_cols:
233
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
234
- self.set_output_cols(output_cols=cols)
235
-
236
238
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RadiusNeighborsRegressor":
237
239
  """
238
240
  Input columns setter.
@@ -278,54 +280,48 @@ class RadiusNeighborsRegressor(BaseTransformer):
278
280
  self
279
281
  """
280
282
  self._infer_input_output_cols(dataset)
281
- if isinstance(dataset, pd.DataFrame):
282
- assert self._sklearn_object is not None # keep mypy happy
283
- self._sklearn_object = self._handlers.fit_pandas(
284
- dataset,
285
- self._sklearn_object,
286
- self.input_cols,
287
- self.label_cols,
288
- self.sample_weight_col
289
- )
290
- elif isinstance(dataset, DataFrame):
291
- self._fit_snowpark(dataset)
292
- else:
293
- raise TypeError(
294
- f"Unexpected dataset type: {type(dataset)}."
295
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
296
- )
283
+ if isinstance(dataset, DataFrame):
284
+ session = dataset._session
285
+ assert session is not None # keep mypy happy
286
+ # Validate that key package version in user workspace are supported in snowflake conda channel
287
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
288
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
289
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
290
+
291
+ # Specify input columns so column pruning will be enforced
292
+ selected_cols = self._get_active_columns()
293
+ if len(selected_cols) > 0:
294
+ dataset = dataset.select(selected_cols)
295
+
296
+ self._snowpark_cols = dataset.select(self.input_cols).columns
297
+
298
+ # If we are already in a stored procedure, no need to kick off another one.
299
+ if SNOWML_SPROC_ENV in os.environ:
300
+ statement_params = telemetry.get_function_usage_statement_params(
301
+ project=_PROJECT,
302
+ subproject=_SUBPROJECT,
303
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RadiusNeighborsRegressor.__class__.__name__),
304
+ api_calls=[Session.call],
305
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
306
+ )
307
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
308
+ pd_df.columns = dataset.columns
309
+ dataset = pd_df
310
+
311
+ model_trainer = ModelTrainerBuilder.build(
312
+ estimator=self._sklearn_object,
313
+ dataset=dataset,
314
+ input_cols=self.input_cols,
315
+ label_cols=self.label_cols,
316
+ sample_weight_col=self.sample_weight_col,
317
+ autogenerated=self._autogenerated,
318
+ subproject=_SUBPROJECT
319
+ )
320
+ self._sklearn_object = model_trainer.train()
297
321
  self._is_fitted = True
298
322
  self._get_model_signatures(dataset)
299
323
  return self
300
324
 
301
- def _fit_snowpark(self, dataset: DataFrame) -> None:
302
- session = dataset._session
303
- assert session is not None # keep mypy happy
304
- # Validate that key package version in user workspace are supported in snowflake conda channel
305
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
306
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
307
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
308
-
309
- # Specify input columns so column pruning will be enforced
310
- selected_cols = self._get_active_columns()
311
- if len(selected_cols) > 0:
312
- dataset = dataset.select(selected_cols)
313
-
314
- estimator = self._sklearn_object
315
- assert estimator is not None # Keep mypy happy
316
-
317
- self._snowpark_cols = dataset.select(self.input_cols).columns
318
-
319
- self._sklearn_object = self._handlers.fit_snowpark(
320
- dataset,
321
- session,
322
- estimator,
323
- ["snowflake-snowpark-python"] + self._get_dependencies(),
324
- self.input_cols,
325
- self.label_cols,
326
- self.sample_weight_col,
327
- )
328
-
329
325
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
330
326
  if self._drop_input_cols:
331
327
  return []
@@ -513,11 +509,6 @@ class RadiusNeighborsRegressor(BaseTransformer):
513
509
  subproject=_SUBPROJECT,
514
510
  custom_tags=dict([("autogen", True)]),
515
511
  )
516
- @telemetry.add_stmt_params_to_df(
517
- project=_PROJECT,
518
- subproject=_SUBPROJECT,
519
- custom_tags=dict([("autogen", True)]),
520
- )
521
512
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
522
513
  """Predict the target for the provided data
523
514
  For more details on this function, see [sklearn.neighbors.RadiusNeighborsRegressor.predict]
@@ -571,11 +562,6 @@ class RadiusNeighborsRegressor(BaseTransformer):
571
562
  subproject=_SUBPROJECT,
572
563
  custom_tags=dict([("autogen", True)]),
573
564
  )
574
- @telemetry.add_stmt_params_to_df(
575
- project=_PROJECT,
576
- subproject=_SUBPROJECT,
577
- custom_tags=dict([("autogen", True)]),
578
- )
579
565
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
580
566
  """Method not supported for this class.
581
567
 
@@ -632,7 +618,8 @@ class RadiusNeighborsRegressor(BaseTransformer):
632
618
  if False:
633
619
  self.fit(dataset)
634
620
  assert self._sklearn_object is not None
635
- return self._sklearn_object.labels_
621
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
622
+ return labels
636
623
  else:
637
624
  raise NotImplementedError
638
625
 
@@ -668,6 +655,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
668
655
  output_cols = []
669
656
 
670
657
  # Make sure column names are valid snowflake identifiers.
658
+ assert output_cols is not None # Make MyPy happy
671
659
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
672
660
 
673
661
  return rv
@@ -678,11 +666,6 @@ class RadiusNeighborsRegressor(BaseTransformer):
678
666
  subproject=_SUBPROJECT,
679
667
  custom_tags=dict([("autogen", True)]),
680
668
  )
681
- @telemetry.add_stmt_params_to_df(
682
- project=_PROJECT,
683
- subproject=_SUBPROJECT,
684
- custom_tags=dict([("autogen", True)]),
685
- )
686
669
  def predict_proba(
687
670
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
688
671
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -723,11 +706,6 @@ class RadiusNeighborsRegressor(BaseTransformer):
723
706
  subproject=_SUBPROJECT,
724
707
  custom_tags=dict([("autogen", True)]),
725
708
  )
726
- @telemetry.add_stmt_params_to_df(
727
- project=_PROJECT,
728
- subproject=_SUBPROJECT,
729
- custom_tags=dict([("autogen", True)]),
730
- )
731
709
  def predict_log_proba(
732
710
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
733
711
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -764,16 +742,6 @@ class RadiusNeighborsRegressor(BaseTransformer):
764
742
  return output_df
765
743
 
766
744
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
767
- @telemetry.send_api_usage_telemetry(
768
- project=_PROJECT,
769
- subproject=_SUBPROJECT,
770
- custom_tags=dict([("autogen", True)]),
771
- )
772
- @telemetry.add_stmt_params_to_df(
773
- project=_PROJECT,
774
- subproject=_SUBPROJECT,
775
- custom_tags=dict([("autogen", True)]),
776
- )
777
745
  def decision_function(
778
746
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
779
747
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -874,11 +842,6 @@ class RadiusNeighborsRegressor(BaseTransformer):
874
842
  subproject=_SUBPROJECT,
875
843
  custom_tags=dict([("autogen", True)]),
876
844
  )
877
- @telemetry.add_stmt_params_to_df(
878
- project=_PROJECT,
879
- subproject=_SUBPROJECT,
880
- custom_tags=dict([("autogen", True)]),
881
- )
882
845
  def kneighbors(
883
846
  self,
884
847
  dataset: Union[DataFrame, pd.DataFrame],
@@ -938,18 +901,28 @@ class RadiusNeighborsRegressor(BaseTransformer):
938
901
  # For classifier, the type of predict is the same as the type of label
939
902
  if self._sklearn_object._estimator_type == 'classifier':
940
903
  # label columns is the desired type for output
941
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
904
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
942
905
  # rename the output columns
943
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
906
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
944
907
  self._model_signature_dict["predict"] = ModelSignature(inputs,
945
908
  ([] if self._drop_input_cols else inputs)
946
909
  + outputs)
910
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
911
+ # For outlier models, returns -1 for outliers and 1 for inliers.
912
+ # Clusterer returns int64 cluster labels.
913
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
914
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
915
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
916
+ ([] if self._drop_input_cols else inputs)
917
+ + outputs)
918
+
947
919
  # For regressor, the type of predict is float64
948
920
  elif self._sklearn_object._estimator_type == 'regressor':
949
921
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
950
922
  self._model_signature_dict["predict"] = ModelSignature(inputs,
951
923
  ([] if self._drop_input_cols else inputs)
952
924
  + outputs)
925
+
953
926
  for prob_func in PROB_FUNCTIONS:
954
927
  if hasattr(self, prob_func):
955
928
  output_cols_prefix: str = f"{prob_func}_"