snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MultinomialNB(BaseTransformer):
|
57
58
|
r"""Naive Bayes classifier for multinomial models
|
58
59
|
For more details on this class, see [sklearn.naive_bayes.MultinomialNB]
|
@@ -60,51 +61,67 @@ class MultinomialNB(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
alpha: float or array-like of shape (n_features,), default=1.0
|
64
|
-
Additive (Laplace/Lidstone) smoothing parameter
|
65
|
-
(set alpha=0 and force_alpha=True, for no smoothing).
|
66
|
-
|
67
|
-
force_alpha: bool, default=False
|
68
|
-
If False and alpha is less than 1e-10, it will set alpha to
|
69
|
-
1e-10. If True, alpha will remain unchanged. This may cause
|
70
|
-
numerical errors if alpha is too close to 0.
|
71
|
-
|
72
|
-
fit_prior: bool, default=True
|
73
|
-
Whether to learn class prior probabilities or not.
|
74
|
-
If false, a uniform prior will be used.
|
75
|
-
|
76
|
-
class_prior: array-like of shape (n_classes,), default=None
|
77
|
-
Prior probabilities of the classes. If specified, the priors are not
|
78
|
-
adjusted according to the data.
|
79
64
|
|
80
65
|
input_cols: Optional[Union[str, List[str]]]
|
81
66
|
A string or list of strings representing column names that contain features.
|
82
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
83
|
-
the columns specified by label_cols
|
84
|
-
considered input columns.
|
85
|
-
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
86
72
|
label_cols: Optional[Union[str, List[str]]]
|
87
73
|
A string or list of strings representing column names that contain labels.
|
88
|
-
|
89
|
-
|
90
|
-
labels (like a transformer).
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
91
76
|
|
92
77
|
output_cols: Optional[Union[str, List[str]]]
|
93
78
|
A string or list of strings representing column names that will store the
|
94
79
|
output of predict and transform operations. The length of output_cols must
|
95
|
-
match the expected number of output columns from the specific
|
80
|
+
match the expected number of output columns from the specific predictor or
|
96
81
|
transformer class used.
|
97
|
-
If this parameter
|
98
|
-
|
99
|
-
|
100
|
-
be set explicitly for transformers.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
101
91
|
|
102
92
|
sample_weight_col: Optional[str]
|
103
93
|
A string representing the column name containing the sample weights.
|
104
|
-
This argument is only required when working with weighted datasets.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
105
|
|
106
106
|
drop_input_cols: Optional[bool], default=False
|
107
107
|
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
109
|
+
alpha: float or array-like of shape (n_features,), default=1.0
|
110
|
+
Additive (Laplace/Lidstone) smoothing parameter
|
111
|
+
(set alpha=0 and force_alpha=True, for no smoothing).
|
112
|
+
|
113
|
+
force_alpha: bool, default=False
|
114
|
+
If False and alpha is less than 1e-10, it will set alpha to
|
115
|
+
1e-10. If True, alpha will remain unchanged. This may cause
|
116
|
+
numerical errors if alpha is too close to 0.
|
117
|
+
|
118
|
+
fit_prior: bool, default=True
|
119
|
+
Whether to learn class prior probabilities or not.
|
120
|
+
If false, a uniform prior will be used.
|
121
|
+
|
122
|
+
class_prior: array-like of shape (n_classes,), default=None
|
123
|
+
Prior probabilities of the classes. If specified, the priors are not
|
124
|
+
adjusted according to the data.
|
108
125
|
"""
|
109
126
|
|
110
127
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -117,6 +134,7 @@ class MultinomialNB(BaseTransformer):
|
|
117
134
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
118
135
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
119
136
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
137
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
120
138
|
drop_input_cols: Optional[bool] = False,
|
121
139
|
sample_weight_col: Optional[str] = None,
|
122
140
|
) -> None:
|
@@ -125,9 +143,10 @@ class MultinomialNB(BaseTransformer):
|
|
125
143
|
self.set_input_cols(input_cols)
|
126
144
|
self.set_output_cols(output_cols)
|
127
145
|
self.set_label_cols(label_cols)
|
146
|
+
self.set_passthrough_cols(passthrough_cols)
|
128
147
|
self.set_drop_input_cols(drop_input_cols)
|
129
148
|
self.set_sample_weight_col(sample_weight_col)
|
130
|
-
deps = set(
|
149
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
131
150
|
|
132
151
|
self._deps = list(deps)
|
133
152
|
|
@@ -139,13 +158,14 @@ class MultinomialNB(BaseTransformer):
|
|
139
158
|
args=init_args,
|
140
159
|
klass=sklearn.naive_bayes.MultinomialNB
|
141
160
|
)
|
142
|
-
self._sklearn_object = sklearn.naive_bayes.MultinomialNB(
|
161
|
+
self._sklearn_object: Any = sklearn.naive_bayes.MultinomialNB(
|
143
162
|
**cleaned_up_init_args,
|
144
163
|
)
|
145
164
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
146
165
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
147
166
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
148
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
167
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
168
|
+
self._autogenerated = True
|
149
169
|
|
150
170
|
def _get_rand_id(self) -> str:
|
151
171
|
"""
|
@@ -156,24 +176,6 @@ class MultinomialNB(BaseTransformer):
|
|
156
176
|
"""
|
157
177
|
return str(uuid4()).replace("-", "_").upper()
|
158
178
|
|
159
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
160
|
-
"""
|
161
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
162
|
-
|
163
|
-
Args:
|
164
|
-
dataset: Input dataset.
|
165
|
-
"""
|
166
|
-
if not self.input_cols:
|
167
|
-
cols = [
|
168
|
-
c for c in dataset.columns
|
169
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
170
|
-
]
|
171
|
-
self.set_input_cols(input_cols=cols)
|
172
|
-
|
173
|
-
if not self.output_cols:
|
174
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
175
|
-
self.set_output_cols(output_cols=cols)
|
176
|
-
|
177
179
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MultinomialNB":
|
178
180
|
"""
|
179
181
|
Input columns setter.
|
@@ -219,54 +221,48 @@ class MultinomialNB(BaseTransformer):
|
|
219
221
|
self
|
220
222
|
"""
|
221
223
|
self._infer_input_output_cols(dataset)
|
222
|
-
if isinstance(dataset,
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
self.
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
224
|
+
if isinstance(dataset, DataFrame):
|
225
|
+
session = dataset._session
|
226
|
+
assert session is not None # keep mypy happy
|
227
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
228
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
229
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
230
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
231
|
+
|
232
|
+
# Specify input columns so column pruning will be enforced
|
233
|
+
selected_cols = self._get_active_columns()
|
234
|
+
if len(selected_cols) > 0:
|
235
|
+
dataset = dataset.select(selected_cols)
|
236
|
+
|
237
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
238
|
+
|
239
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
240
|
+
if SNOWML_SPROC_ENV in os.environ:
|
241
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
242
|
+
project=_PROJECT,
|
243
|
+
subproject=_SUBPROJECT,
|
244
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultinomialNB.__class__.__name__),
|
245
|
+
api_calls=[Session.call],
|
246
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
247
|
+
)
|
248
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
249
|
+
pd_df.columns = dataset.columns
|
250
|
+
dataset = pd_df
|
251
|
+
|
252
|
+
model_trainer = ModelTrainerBuilder.build(
|
253
|
+
estimator=self._sklearn_object,
|
254
|
+
dataset=dataset,
|
255
|
+
input_cols=self.input_cols,
|
256
|
+
label_cols=self.label_cols,
|
257
|
+
sample_weight_col=self.sample_weight_col,
|
258
|
+
autogenerated=self._autogenerated,
|
259
|
+
subproject=_SUBPROJECT
|
260
|
+
)
|
261
|
+
self._sklearn_object = model_trainer.train()
|
238
262
|
self._is_fitted = True
|
239
263
|
self._get_model_signatures(dataset)
|
240
264
|
return self
|
241
265
|
|
242
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
243
|
-
session = dataset._session
|
244
|
-
assert session is not None # keep mypy happy
|
245
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
246
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
247
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
248
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
249
|
-
|
250
|
-
# Specify input columns so column pruning will be enforced
|
251
|
-
selected_cols = self._get_active_columns()
|
252
|
-
if len(selected_cols) > 0:
|
253
|
-
dataset = dataset.select(selected_cols)
|
254
|
-
|
255
|
-
estimator = self._sklearn_object
|
256
|
-
assert estimator is not None # Keep mypy happy
|
257
|
-
|
258
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
259
|
-
|
260
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
261
|
-
dataset,
|
262
|
-
session,
|
263
|
-
estimator,
|
264
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
265
|
-
self.input_cols,
|
266
|
-
self.label_cols,
|
267
|
-
self.sample_weight_col,
|
268
|
-
)
|
269
|
-
|
270
266
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
271
267
|
if self._drop_input_cols:
|
272
268
|
return []
|
@@ -454,11 +450,6 @@ class MultinomialNB(BaseTransformer):
|
|
454
450
|
subproject=_SUBPROJECT,
|
455
451
|
custom_tags=dict([("autogen", True)]),
|
456
452
|
)
|
457
|
-
@telemetry.add_stmt_params_to_df(
|
458
|
-
project=_PROJECT,
|
459
|
-
subproject=_SUBPROJECT,
|
460
|
-
custom_tags=dict([("autogen", True)]),
|
461
|
-
)
|
462
453
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
463
454
|
"""Perform classification on an array of test vectors X
|
464
455
|
For more details on this function, see [sklearn.naive_bayes.MultinomialNB.predict]
|
@@ -512,11 +503,6 @@ class MultinomialNB(BaseTransformer):
|
|
512
503
|
subproject=_SUBPROJECT,
|
513
504
|
custom_tags=dict([("autogen", True)]),
|
514
505
|
)
|
515
|
-
@telemetry.add_stmt_params_to_df(
|
516
|
-
project=_PROJECT,
|
517
|
-
subproject=_SUBPROJECT,
|
518
|
-
custom_tags=dict([("autogen", True)]),
|
519
|
-
)
|
520
506
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
521
507
|
"""Method not supported for this class.
|
522
508
|
|
@@ -573,7 +559,8 @@ class MultinomialNB(BaseTransformer):
|
|
573
559
|
if False:
|
574
560
|
self.fit(dataset)
|
575
561
|
assert self._sklearn_object is not None
|
576
|
-
|
562
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
563
|
+
return labels
|
577
564
|
else:
|
578
565
|
raise NotImplementedError
|
579
566
|
|
@@ -609,6 +596,7 @@ class MultinomialNB(BaseTransformer):
|
|
609
596
|
output_cols = []
|
610
597
|
|
611
598
|
# Make sure column names are valid snowflake identifiers.
|
599
|
+
assert output_cols is not None # Make MyPy happy
|
612
600
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
613
601
|
|
614
602
|
return rv
|
@@ -619,11 +607,6 @@ class MultinomialNB(BaseTransformer):
|
|
619
607
|
subproject=_SUBPROJECT,
|
620
608
|
custom_tags=dict([("autogen", True)]),
|
621
609
|
)
|
622
|
-
@telemetry.add_stmt_params_to_df(
|
623
|
-
project=_PROJECT,
|
624
|
-
subproject=_SUBPROJECT,
|
625
|
-
custom_tags=dict([("autogen", True)]),
|
626
|
-
)
|
627
610
|
def predict_proba(
|
628
611
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
629
612
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -666,11 +649,6 @@ class MultinomialNB(BaseTransformer):
|
|
666
649
|
subproject=_SUBPROJECT,
|
667
650
|
custom_tags=dict([("autogen", True)]),
|
668
651
|
)
|
669
|
-
@telemetry.add_stmt_params_to_df(
|
670
|
-
project=_PROJECT,
|
671
|
-
subproject=_SUBPROJECT,
|
672
|
-
custom_tags=dict([("autogen", True)]),
|
673
|
-
)
|
674
652
|
def predict_log_proba(
|
675
653
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
676
654
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -709,16 +687,6 @@ class MultinomialNB(BaseTransformer):
|
|
709
687
|
return output_df
|
710
688
|
|
711
689
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
712
|
-
@telemetry.send_api_usage_telemetry(
|
713
|
-
project=_PROJECT,
|
714
|
-
subproject=_SUBPROJECT,
|
715
|
-
custom_tags=dict([("autogen", True)]),
|
716
|
-
)
|
717
|
-
@telemetry.add_stmt_params_to_df(
|
718
|
-
project=_PROJECT,
|
719
|
-
subproject=_SUBPROJECT,
|
720
|
-
custom_tags=dict([("autogen", True)]),
|
721
|
-
)
|
722
690
|
def decision_function(
|
723
691
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
724
692
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -819,11 +787,6 @@ class MultinomialNB(BaseTransformer):
|
|
819
787
|
subproject=_SUBPROJECT,
|
820
788
|
custom_tags=dict([("autogen", True)]),
|
821
789
|
)
|
822
|
-
@telemetry.add_stmt_params_to_df(
|
823
|
-
project=_PROJECT,
|
824
|
-
subproject=_SUBPROJECT,
|
825
|
-
custom_tags=dict([("autogen", True)]),
|
826
|
-
)
|
827
790
|
def kneighbors(
|
828
791
|
self,
|
829
792
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -883,18 +846,28 @@ class MultinomialNB(BaseTransformer):
|
|
883
846
|
# For classifier, the type of predict is the same as the type of label
|
884
847
|
if self._sklearn_object._estimator_type == 'classifier':
|
885
848
|
# label columns is the desired type for output
|
886
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
849
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
887
850
|
# rename the output columns
|
888
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
851
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
852
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
853
|
+
([] if self._drop_input_cols else inputs)
|
854
|
+
+ outputs)
|
855
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
856
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
857
|
+
# Clusterer returns int64 cluster labels.
|
858
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
859
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
889
860
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
890
861
|
([] if self._drop_input_cols else inputs)
|
891
862
|
+ outputs)
|
863
|
+
|
892
864
|
# For regressor, the type of predict is float64
|
893
865
|
elif self._sklearn_object._estimator_type == 'regressor':
|
894
866
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
895
867
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
896
868
|
([] if self._drop_input_cols else inputs)
|
897
869
|
+ outputs)
|
870
|
+
|
898
871
|
for prob_func in PROB_FUNCTIONS:
|
899
872
|
if hasattr(self, prob_func):
|
900
873
|
output_cols_prefix: str = f"{prob_func}_"
|