snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MultinomialNB(BaseTransformer):
57
58
  r"""Naive Bayes classifier for multinomial models
58
59
  For more details on this class, see [sklearn.naive_bayes.MultinomialNB]
@@ -60,51 +61,67 @@ class MultinomialNB(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- alpha: float or array-like of shape (n_features,), default=1.0
64
- Additive (Laplace/Lidstone) smoothing parameter
65
- (set alpha=0 and force_alpha=True, for no smoothing).
66
-
67
- force_alpha: bool, default=False
68
- If False and alpha is less than 1e-10, it will set alpha to
69
- 1e-10. If True, alpha will remain unchanged. This may cause
70
- numerical errors if alpha is too close to 0.
71
-
72
- fit_prior: bool, default=True
73
- Whether to learn class prior probabilities or not.
74
- If false, a uniform prior will be used.
75
-
76
- class_prior: array-like of shape (n_classes,), default=None
77
- Prior probabilities of the classes. If specified, the priors are not
78
- adjusted according to the data.
79
64
 
80
65
  input_cols: Optional[Union[str, List[str]]]
81
66
  A string or list of strings representing column names that contain features.
82
67
  If this parameter is not specified, all columns in the input DataFrame except
83
- the columns specified by label_cols and sample_weight_col parameters are
84
- considered input columns.
85
-
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
86
72
  label_cols: Optional[Union[str, List[str]]]
87
73
  A string or list of strings representing column names that contain labels.
88
- This is a required param for estimators, as there is no way to infer these
89
- columns. If this parameter is not specified, then object is fitted without
90
- labels (like a transformer).
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
91
76
 
92
77
  output_cols: Optional[Union[str, List[str]]]
93
78
  A string or list of strings representing column names that will store the
94
79
  output of predict and transform operations. The length of output_cols must
95
- match the expected number of output columns from the specific estimator or
80
+ match the expected number of output columns from the specific predictor or
96
81
  transformer class used.
97
- If this parameter is not specified, output column names are derived by
98
- adding an OUTPUT_ prefix to the label column names. These inferred output
99
- column names work for estimator's predict() method, but output_cols must
100
- be set explicitly for transformers.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
101
91
 
102
92
  sample_weight_col: Optional[str]
103
93
  A string representing the column name containing the sample weights.
104
- This argument is only required when working with weighted datasets.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
105
 
106
106
  drop_input_cols: Optional[bool], default=False
107
107
  If set, the response of predict(), transform() methods will not contain input columns.
108
+
109
+ alpha: float or array-like of shape (n_features,), default=1.0
110
+ Additive (Laplace/Lidstone) smoothing parameter
111
+ (set alpha=0 and force_alpha=True, for no smoothing).
112
+
113
+ force_alpha: bool, default=False
114
+ If False and alpha is less than 1e-10, it will set alpha to
115
+ 1e-10. If True, alpha will remain unchanged. This may cause
116
+ numerical errors if alpha is too close to 0.
117
+
118
+ fit_prior: bool, default=True
119
+ Whether to learn class prior probabilities or not.
120
+ If false, a uniform prior will be used.
121
+
122
+ class_prior: array-like of shape (n_classes,), default=None
123
+ Prior probabilities of the classes. If specified, the priors are not
124
+ adjusted according to the data.
108
125
  """
109
126
 
110
127
  def __init__( # type: ignore[no-untyped-def]
@@ -117,6 +134,7 @@ class MultinomialNB(BaseTransformer):
117
134
  input_cols: Optional[Union[str, Iterable[str]]] = None,
118
135
  output_cols: Optional[Union[str, Iterable[str]]] = None,
119
136
  label_cols: Optional[Union[str, Iterable[str]]] = None,
137
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
120
138
  drop_input_cols: Optional[bool] = False,
121
139
  sample_weight_col: Optional[str] = None,
122
140
  ) -> None:
@@ -125,9 +143,10 @@ class MultinomialNB(BaseTransformer):
125
143
  self.set_input_cols(input_cols)
126
144
  self.set_output_cols(output_cols)
127
145
  self.set_label_cols(label_cols)
146
+ self.set_passthrough_cols(passthrough_cols)
128
147
  self.set_drop_input_cols(drop_input_cols)
129
148
  self.set_sample_weight_col(sample_weight_col)
130
- deps = set(SklearnWrapperProvider().dependencies)
149
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
131
150
 
132
151
  self._deps = list(deps)
133
152
 
@@ -139,13 +158,14 @@ class MultinomialNB(BaseTransformer):
139
158
  args=init_args,
140
159
  klass=sklearn.naive_bayes.MultinomialNB
141
160
  )
142
- self._sklearn_object = sklearn.naive_bayes.MultinomialNB(
161
+ self._sklearn_object: Any = sklearn.naive_bayes.MultinomialNB(
143
162
  **cleaned_up_init_args,
144
163
  )
145
164
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
146
165
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
147
166
  self._snowpark_cols: Optional[List[str]] = self.input_cols
148
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
167
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultinomialNB.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
168
+ self._autogenerated = True
149
169
 
150
170
  def _get_rand_id(self) -> str:
151
171
  """
@@ -156,24 +176,6 @@ class MultinomialNB(BaseTransformer):
156
176
  """
157
177
  return str(uuid4()).replace("-", "_").upper()
158
178
 
159
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
160
- """
161
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
162
-
163
- Args:
164
- dataset: Input dataset.
165
- """
166
- if not self.input_cols:
167
- cols = [
168
- c for c in dataset.columns
169
- if c not in self.get_label_cols() and c != self.sample_weight_col
170
- ]
171
- self.set_input_cols(input_cols=cols)
172
-
173
- if not self.output_cols:
174
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
175
- self.set_output_cols(output_cols=cols)
176
-
177
179
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MultinomialNB":
178
180
  """
179
181
  Input columns setter.
@@ -219,54 +221,48 @@ class MultinomialNB(BaseTransformer):
219
221
  self
220
222
  """
221
223
  self._infer_input_output_cols(dataset)
222
- if isinstance(dataset, pd.DataFrame):
223
- assert self._sklearn_object is not None # keep mypy happy
224
- self._sklearn_object = self._handlers.fit_pandas(
225
- dataset,
226
- self._sklearn_object,
227
- self.input_cols,
228
- self.label_cols,
229
- self.sample_weight_col
230
- )
231
- elif isinstance(dataset, DataFrame):
232
- self._fit_snowpark(dataset)
233
- else:
234
- raise TypeError(
235
- f"Unexpected dataset type: {type(dataset)}."
236
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
237
- )
224
+ if isinstance(dataset, DataFrame):
225
+ session = dataset._session
226
+ assert session is not None # keep mypy happy
227
+ # Validate that key package version in user workspace are supported in snowflake conda channel
228
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
229
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
230
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
231
+
232
+ # Specify input columns so column pruning will be enforced
233
+ selected_cols = self._get_active_columns()
234
+ if len(selected_cols) > 0:
235
+ dataset = dataset.select(selected_cols)
236
+
237
+ self._snowpark_cols = dataset.select(self.input_cols).columns
238
+
239
+ # If we are already in a stored procedure, no need to kick off another one.
240
+ if SNOWML_SPROC_ENV in os.environ:
241
+ statement_params = telemetry.get_function_usage_statement_params(
242
+ project=_PROJECT,
243
+ subproject=_SUBPROJECT,
244
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultinomialNB.__class__.__name__),
245
+ api_calls=[Session.call],
246
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
247
+ )
248
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
249
+ pd_df.columns = dataset.columns
250
+ dataset = pd_df
251
+
252
+ model_trainer = ModelTrainerBuilder.build(
253
+ estimator=self._sklearn_object,
254
+ dataset=dataset,
255
+ input_cols=self.input_cols,
256
+ label_cols=self.label_cols,
257
+ sample_weight_col=self.sample_weight_col,
258
+ autogenerated=self._autogenerated,
259
+ subproject=_SUBPROJECT
260
+ )
261
+ self._sklearn_object = model_trainer.train()
238
262
  self._is_fitted = True
239
263
  self._get_model_signatures(dataset)
240
264
  return self
241
265
 
242
- def _fit_snowpark(self, dataset: DataFrame) -> None:
243
- session = dataset._session
244
- assert session is not None # keep mypy happy
245
- # Validate that key package version in user workspace are supported in snowflake conda channel
246
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
247
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
248
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
249
-
250
- # Specify input columns so column pruning will be enforced
251
- selected_cols = self._get_active_columns()
252
- if len(selected_cols) > 0:
253
- dataset = dataset.select(selected_cols)
254
-
255
- estimator = self._sklearn_object
256
- assert estimator is not None # Keep mypy happy
257
-
258
- self._snowpark_cols = dataset.select(self.input_cols).columns
259
-
260
- self._sklearn_object = self._handlers.fit_snowpark(
261
- dataset,
262
- session,
263
- estimator,
264
- ["snowflake-snowpark-python"] + self._get_dependencies(),
265
- self.input_cols,
266
- self.label_cols,
267
- self.sample_weight_col,
268
- )
269
-
270
266
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
271
267
  if self._drop_input_cols:
272
268
  return []
@@ -454,11 +450,6 @@ class MultinomialNB(BaseTransformer):
454
450
  subproject=_SUBPROJECT,
455
451
  custom_tags=dict([("autogen", True)]),
456
452
  )
457
- @telemetry.add_stmt_params_to_df(
458
- project=_PROJECT,
459
- subproject=_SUBPROJECT,
460
- custom_tags=dict([("autogen", True)]),
461
- )
462
453
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
463
454
  """Perform classification on an array of test vectors X
464
455
  For more details on this function, see [sklearn.naive_bayes.MultinomialNB.predict]
@@ -512,11 +503,6 @@ class MultinomialNB(BaseTransformer):
512
503
  subproject=_SUBPROJECT,
513
504
  custom_tags=dict([("autogen", True)]),
514
505
  )
515
- @telemetry.add_stmt_params_to_df(
516
- project=_PROJECT,
517
- subproject=_SUBPROJECT,
518
- custom_tags=dict([("autogen", True)]),
519
- )
520
506
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
521
507
  """Method not supported for this class.
522
508
 
@@ -573,7 +559,8 @@ class MultinomialNB(BaseTransformer):
573
559
  if False:
574
560
  self.fit(dataset)
575
561
  assert self._sklearn_object is not None
576
- return self._sklearn_object.labels_
562
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
563
+ return labels
577
564
  else:
578
565
  raise NotImplementedError
579
566
 
@@ -609,6 +596,7 @@ class MultinomialNB(BaseTransformer):
609
596
  output_cols = []
610
597
 
611
598
  # Make sure column names are valid snowflake identifiers.
599
+ assert output_cols is not None # Make MyPy happy
612
600
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
613
601
 
614
602
  return rv
@@ -619,11 +607,6 @@ class MultinomialNB(BaseTransformer):
619
607
  subproject=_SUBPROJECT,
620
608
  custom_tags=dict([("autogen", True)]),
621
609
  )
622
- @telemetry.add_stmt_params_to_df(
623
- project=_PROJECT,
624
- subproject=_SUBPROJECT,
625
- custom_tags=dict([("autogen", True)]),
626
- )
627
610
  def predict_proba(
628
611
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
629
612
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -666,11 +649,6 @@ class MultinomialNB(BaseTransformer):
666
649
  subproject=_SUBPROJECT,
667
650
  custom_tags=dict([("autogen", True)]),
668
651
  )
669
- @telemetry.add_stmt_params_to_df(
670
- project=_PROJECT,
671
- subproject=_SUBPROJECT,
672
- custom_tags=dict([("autogen", True)]),
673
- )
674
652
  def predict_log_proba(
675
653
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
676
654
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -709,16 +687,6 @@ class MultinomialNB(BaseTransformer):
709
687
  return output_df
710
688
 
711
689
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
712
- @telemetry.send_api_usage_telemetry(
713
- project=_PROJECT,
714
- subproject=_SUBPROJECT,
715
- custom_tags=dict([("autogen", True)]),
716
- )
717
- @telemetry.add_stmt_params_to_df(
718
- project=_PROJECT,
719
- subproject=_SUBPROJECT,
720
- custom_tags=dict([("autogen", True)]),
721
- )
722
690
  def decision_function(
723
691
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
724
692
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -819,11 +787,6 @@ class MultinomialNB(BaseTransformer):
819
787
  subproject=_SUBPROJECT,
820
788
  custom_tags=dict([("autogen", True)]),
821
789
  )
822
- @telemetry.add_stmt_params_to_df(
823
- project=_PROJECT,
824
- subproject=_SUBPROJECT,
825
- custom_tags=dict([("autogen", True)]),
826
- )
827
790
  def kneighbors(
828
791
  self,
829
792
  dataset: Union[DataFrame, pd.DataFrame],
@@ -883,18 +846,28 @@ class MultinomialNB(BaseTransformer):
883
846
  # For classifier, the type of predict is the same as the type of label
884
847
  if self._sklearn_object._estimator_type == 'classifier':
885
848
  # label columns is the desired type for output
886
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
849
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
887
850
  # rename the output columns
888
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
851
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
852
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
853
+ ([] if self._drop_input_cols else inputs)
854
+ + outputs)
855
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
856
+ # For outlier models, returns -1 for outliers and 1 for inliers.
857
+ # Clusterer returns int64 cluster labels.
858
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
859
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
889
860
  self._model_signature_dict["predict"] = ModelSignature(inputs,
890
861
  ([] if self._drop_input_cols else inputs)
891
862
  + outputs)
863
+
892
864
  # For regressor, the type of predict is float64
893
865
  elif self._sklearn_object._estimator_type == 'regressor':
894
866
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
895
867
  self._model_signature_dict["predict"] = ModelSignature(inputs,
896
868
  ([] if self._drop_input_cols else inputs)
897
869
  + outputs)
870
+
898
871
  for prob_func in PROB_FUNCTIONS:
899
872
  if hasattr(self, prob_func):
900
873
  output_cols_prefix: str = f"{prob_func}_"