snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LassoLarsIC(BaseTransformer):
|
57
58
|
r"""Lasso model fit with Lars using BIC or AIC for model selection
|
58
59
|
For more details on this class, see [sklearn.linear_model.LassoLarsIC]
|
@@ -60,6 +61,51 @@ class LassoLarsIC(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
criterion: {'aic', 'bic'}, default='aic'
|
64
110
|
The type of criterion to use.
|
65
111
|
|
@@ -114,35 +160,6 @@ class LassoLarsIC(BaseTransformer):
|
|
114
160
|
The estimated noise variance of the data. If `None`, an unbiased
|
115
161
|
estimate is computed by an OLS model. However, it is only possible
|
116
162
|
in the case where `n_samples > n_features + fit_intercept`.
|
117
|
-
|
118
|
-
input_cols: Optional[Union[str, List[str]]]
|
119
|
-
A string or list of strings representing column names that contain features.
|
120
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
121
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
122
|
-
considered input columns.
|
123
|
-
|
124
|
-
label_cols: Optional[Union[str, List[str]]]
|
125
|
-
A string or list of strings representing column names that contain labels.
|
126
|
-
This is a required param for estimators, as there is no way to infer these
|
127
|
-
columns. If this parameter is not specified, then object is fitted without
|
128
|
-
labels (like a transformer).
|
129
|
-
|
130
|
-
output_cols: Optional[Union[str, List[str]]]
|
131
|
-
A string or list of strings representing column names that will store the
|
132
|
-
output of predict and transform operations. The length of output_cols must
|
133
|
-
match the expected number of output columns from the specific estimator or
|
134
|
-
transformer class used.
|
135
|
-
If this parameter is not specified, output column names are derived by
|
136
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
137
|
-
column names work for estimator's predict() method, but output_cols must
|
138
|
-
be set explicitly for transformers.
|
139
|
-
|
140
|
-
sample_weight_col: Optional[str]
|
141
|
-
A string representing the column name containing the sample weights.
|
142
|
-
This argument is only required when working with weighted datasets.
|
143
|
-
|
144
|
-
drop_input_cols: Optional[bool], default=False
|
145
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
146
163
|
"""
|
147
164
|
|
148
165
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -161,6 +178,7 @@ class LassoLarsIC(BaseTransformer):
|
|
161
178
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
162
179
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
163
180
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
181
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
164
182
|
drop_input_cols: Optional[bool] = False,
|
165
183
|
sample_weight_col: Optional[str] = None,
|
166
184
|
) -> None:
|
@@ -169,9 +187,10 @@ class LassoLarsIC(BaseTransformer):
|
|
169
187
|
self.set_input_cols(input_cols)
|
170
188
|
self.set_output_cols(output_cols)
|
171
189
|
self.set_label_cols(label_cols)
|
190
|
+
self.set_passthrough_cols(passthrough_cols)
|
172
191
|
self.set_drop_input_cols(drop_input_cols)
|
173
192
|
self.set_sample_weight_col(sample_weight_col)
|
174
|
-
deps = set(
|
193
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
175
194
|
|
176
195
|
self._deps = list(deps)
|
177
196
|
|
@@ -189,13 +208,14 @@ class LassoLarsIC(BaseTransformer):
|
|
189
208
|
args=init_args,
|
190
209
|
klass=sklearn.linear_model.LassoLarsIC
|
191
210
|
)
|
192
|
-
self._sklearn_object = sklearn.linear_model.LassoLarsIC(
|
211
|
+
self._sklearn_object: Any = sklearn.linear_model.LassoLarsIC(
|
193
212
|
**cleaned_up_init_args,
|
194
213
|
)
|
195
214
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
196
215
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
197
216
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
198
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsIC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
217
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsIC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
218
|
+
self._autogenerated = True
|
199
219
|
|
200
220
|
def _get_rand_id(self) -> str:
|
201
221
|
"""
|
@@ -206,24 +226,6 @@ class LassoLarsIC(BaseTransformer):
|
|
206
226
|
"""
|
207
227
|
return str(uuid4()).replace("-", "_").upper()
|
208
228
|
|
209
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
210
|
-
"""
|
211
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
212
|
-
|
213
|
-
Args:
|
214
|
-
dataset: Input dataset.
|
215
|
-
"""
|
216
|
-
if not self.input_cols:
|
217
|
-
cols = [
|
218
|
-
c for c in dataset.columns
|
219
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
220
|
-
]
|
221
|
-
self.set_input_cols(input_cols=cols)
|
222
|
-
|
223
|
-
if not self.output_cols:
|
224
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
225
|
-
self.set_output_cols(output_cols=cols)
|
226
|
-
|
227
229
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LassoLarsIC":
|
228
230
|
"""
|
229
231
|
Input columns setter.
|
@@ -269,54 +271,48 @@ class LassoLarsIC(BaseTransformer):
|
|
269
271
|
self
|
270
272
|
"""
|
271
273
|
self._infer_input_output_cols(dataset)
|
272
|
-
if isinstance(dataset,
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
self.
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
274
|
+
if isinstance(dataset, DataFrame):
|
275
|
+
session = dataset._session
|
276
|
+
assert session is not None # keep mypy happy
|
277
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
278
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
279
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
280
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
281
|
+
|
282
|
+
# Specify input columns so column pruning will be enforced
|
283
|
+
selected_cols = self._get_active_columns()
|
284
|
+
if len(selected_cols) > 0:
|
285
|
+
dataset = dataset.select(selected_cols)
|
286
|
+
|
287
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
288
|
+
|
289
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
290
|
+
if SNOWML_SPROC_ENV in os.environ:
|
291
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
292
|
+
project=_PROJECT,
|
293
|
+
subproject=_SUBPROJECT,
|
294
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsIC.__class__.__name__),
|
295
|
+
api_calls=[Session.call],
|
296
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
297
|
+
)
|
298
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
299
|
+
pd_df.columns = dataset.columns
|
300
|
+
dataset = pd_df
|
301
|
+
|
302
|
+
model_trainer = ModelTrainerBuilder.build(
|
303
|
+
estimator=self._sklearn_object,
|
304
|
+
dataset=dataset,
|
305
|
+
input_cols=self.input_cols,
|
306
|
+
label_cols=self.label_cols,
|
307
|
+
sample_weight_col=self.sample_weight_col,
|
308
|
+
autogenerated=self._autogenerated,
|
309
|
+
subproject=_SUBPROJECT
|
310
|
+
)
|
311
|
+
self._sklearn_object = model_trainer.train()
|
288
312
|
self._is_fitted = True
|
289
313
|
self._get_model_signatures(dataset)
|
290
314
|
return self
|
291
315
|
|
292
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
293
|
-
session = dataset._session
|
294
|
-
assert session is not None # keep mypy happy
|
295
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
296
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
297
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
298
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
299
|
-
|
300
|
-
# Specify input columns so column pruning will be enforced
|
301
|
-
selected_cols = self._get_active_columns()
|
302
|
-
if len(selected_cols) > 0:
|
303
|
-
dataset = dataset.select(selected_cols)
|
304
|
-
|
305
|
-
estimator = self._sklearn_object
|
306
|
-
assert estimator is not None # Keep mypy happy
|
307
|
-
|
308
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
309
|
-
|
310
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
311
|
-
dataset,
|
312
|
-
session,
|
313
|
-
estimator,
|
314
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
315
|
-
self.input_cols,
|
316
|
-
self.label_cols,
|
317
|
-
self.sample_weight_col,
|
318
|
-
)
|
319
|
-
|
320
316
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
321
317
|
if self._drop_input_cols:
|
322
318
|
return []
|
@@ -504,11 +500,6 @@ class LassoLarsIC(BaseTransformer):
|
|
504
500
|
subproject=_SUBPROJECT,
|
505
501
|
custom_tags=dict([("autogen", True)]),
|
506
502
|
)
|
507
|
-
@telemetry.add_stmt_params_to_df(
|
508
|
-
project=_PROJECT,
|
509
|
-
subproject=_SUBPROJECT,
|
510
|
-
custom_tags=dict([("autogen", True)]),
|
511
|
-
)
|
512
503
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
513
504
|
"""Predict using the linear model
|
514
505
|
For more details on this function, see [sklearn.linear_model.LassoLarsIC.predict]
|
@@ -562,11 +553,6 @@ class LassoLarsIC(BaseTransformer):
|
|
562
553
|
subproject=_SUBPROJECT,
|
563
554
|
custom_tags=dict([("autogen", True)]),
|
564
555
|
)
|
565
|
-
@telemetry.add_stmt_params_to_df(
|
566
|
-
project=_PROJECT,
|
567
|
-
subproject=_SUBPROJECT,
|
568
|
-
custom_tags=dict([("autogen", True)]),
|
569
|
-
)
|
570
556
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
571
557
|
"""Method not supported for this class.
|
572
558
|
|
@@ -623,7 +609,8 @@ class LassoLarsIC(BaseTransformer):
|
|
623
609
|
if False:
|
624
610
|
self.fit(dataset)
|
625
611
|
assert self._sklearn_object is not None
|
626
|
-
|
612
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
613
|
+
return labels
|
627
614
|
else:
|
628
615
|
raise NotImplementedError
|
629
616
|
|
@@ -659,6 +646,7 @@ class LassoLarsIC(BaseTransformer):
|
|
659
646
|
output_cols = []
|
660
647
|
|
661
648
|
# Make sure column names are valid snowflake identifiers.
|
649
|
+
assert output_cols is not None # Make MyPy happy
|
662
650
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
663
651
|
|
664
652
|
return rv
|
@@ -669,11 +657,6 @@ class LassoLarsIC(BaseTransformer):
|
|
669
657
|
subproject=_SUBPROJECT,
|
670
658
|
custom_tags=dict([("autogen", True)]),
|
671
659
|
)
|
672
|
-
@telemetry.add_stmt_params_to_df(
|
673
|
-
project=_PROJECT,
|
674
|
-
subproject=_SUBPROJECT,
|
675
|
-
custom_tags=dict([("autogen", True)]),
|
676
|
-
)
|
677
660
|
def predict_proba(
|
678
661
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
679
662
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -714,11 +697,6 @@ class LassoLarsIC(BaseTransformer):
|
|
714
697
|
subproject=_SUBPROJECT,
|
715
698
|
custom_tags=dict([("autogen", True)]),
|
716
699
|
)
|
717
|
-
@telemetry.add_stmt_params_to_df(
|
718
|
-
project=_PROJECT,
|
719
|
-
subproject=_SUBPROJECT,
|
720
|
-
custom_tags=dict([("autogen", True)]),
|
721
|
-
)
|
722
700
|
def predict_log_proba(
|
723
701
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
724
702
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -755,16 +733,6 @@ class LassoLarsIC(BaseTransformer):
|
|
755
733
|
return output_df
|
756
734
|
|
757
735
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
758
|
-
@telemetry.send_api_usage_telemetry(
|
759
|
-
project=_PROJECT,
|
760
|
-
subproject=_SUBPROJECT,
|
761
|
-
custom_tags=dict([("autogen", True)]),
|
762
|
-
)
|
763
|
-
@telemetry.add_stmt_params_to_df(
|
764
|
-
project=_PROJECT,
|
765
|
-
subproject=_SUBPROJECT,
|
766
|
-
custom_tags=dict([("autogen", True)]),
|
767
|
-
)
|
768
736
|
def decision_function(
|
769
737
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
770
738
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -865,11 +833,6 @@ class LassoLarsIC(BaseTransformer):
|
|
865
833
|
subproject=_SUBPROJECT,
|
866
834
|
custom_tags=dict([("autogen", True)]),
|
867
835
|
)
|
868
|
-
@telemetry.add_stmt_params_to_df(
|
869
|
-
project=_PROJECT,
|
870
|
-
subproject=_SUBPROJECT,
|
871
|
-
custom_tags=dict([("autogen", True)]),
|
872
|
-
)
|
873
836
|
def kneighbors(
|
874
837
|
self,
|
875
838
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -929,18 +892,28 @@ class LassoLarsIC(BaseTransformer):
|
|
929
892
|
# For classifier, the type of predict is the same as the type of label
|
930
893
|
if self._sklearn_object._estimator_type == 'classifier':
|
931
894
|
# label columns is the desired type for output
|
932
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
895
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
933
896
|
# rename the output columns
|
934
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
897
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
935
898
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
936
899
|
([] if self._drop_input_cols else inputs)
|
937
900
|
+ outputs)
|
901
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
902
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
903
|
+
# Clusterer returns int64 cluster labels.
|
904
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
905
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
906
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
907
|
+
([] if self._drop_input_cols else inputs)
|
908
|
+
+ outputs)
|
909
|
+
|
938
910
|
# For regressor, the type of predict is float64
|
939
911
|
elif self._sklearn_object._estimator_type == 'regressor':
|
940
912
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
941
913
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
942
914
|
([] if self._drop_input_cols else inputs)
|
943
915
|
+ outputs)
|
916
|
+
|
944
917
|
for prob_func in PROB_FUNCTIONS:
|
945
918
|
if hasattr(self, prob_func):
|
946
919
|
output_cols_prefix: str = f"{prob_func}_"
|