snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LassoLarsIC(BaseTransformer):
57
58
  r"""Lasso model fit with Lars using BIC or AIC for model selection
58
59
  For more details on this class, see [sklearn.linear_model.LassoLarsIC]
@@ -60,6 +61,51 @@ class LassoLarsIC(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  criterion: {'aic', 'bic'}, default='aic'
64
110
  The type of criterion to use.
65
111
 
@@ -114,35 +160,6 @@ class LassoLarsIC(BaseTransformer):
114
160
  The estimated noise variance of the data. If `None`, an unbiased
115
161
  estimate is computed by an OLS model. However, it is only possible
116
162
  in the case where `n_samples > n_features + fit_intercept`.
117
-
118
- input_cols: Optional[Union[str, List[str]]]
119
- A string or list of strings representing column names that contain features.
120
- If this parameter is not specified, all columns in the input DataFrame except
121
- the columns specified by label_cols and sample_weight_col parameters are
122
- considered input columns.
123
-
124
- label_cols: Optional[Union[str, List[str]]]
125
- A string or list of strings representing column names that contain labels.
126
- This is a required param for estimators, as there is no way to infer these
127
- columns. If this parameter is not specified, then object is fitted without
128
- labels (like a transformer).
129
-
130
- output_cols: Optional[Union[str, List[str]]]
131
- A string or list of strings representing column names that will store the
132
- output of predict and transform operations. The length of output_cols must
133
- match the expected number of output columns from the specific estimator or
134
- transformer class used.
135
- If this parameter is not specified, output column names are derived by
136
- adding an OUTPUT_ prefix to the label column names. These inferred output
137
- column names work for estimator's predict() method, but output_cols must
138
- be set explicitly for transformers.
139
-
140
- sample_weight_col: Optional[str]
141
- A string representing the column name containing the sample weights.
142
- This argument is only required when working with weighted datasets.
143
-
144
- drop_input_cols: Optional[bool], default=False
145
- If set, the response of predict(), transform() methods will not contain input columns.
146
163
  """
147
164
 
148
165
  def __init__( # type: ignore[no-untyped-def]
@@ -161,6 +178,7 @@ class LassoLarsIC(BaseTransformer):
161
178
  input_cols: Optional[Union[str, Iterable[str]]] = None,
162
179
  output_cols: Optional[Union[str, Iterable[str]]] = None,
163
180
  label_cols: Optional[Union[str, Iterable[str]]] = None,
181
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
164
182
  drop_input_cols: Optional[bool] = False,
165
183
  sample_weight_col: Optional[str] = None,
166
184
  ) -> None:
@@ -169,9 +187,10 @@ class LassoLarsIC(BaseTransformer):
169
187
  self.set_input_cols(input_cols)
170
188
  self.set_output_cols(output_cols)
171
189
  self.set_label_cols(label_cols)
190
+ self.set_passthrough_cols(passthrough_cols)
172
191
  self.set_drop_input_cols(drop_input_cols)
173
192
  self.set_sample_weight_col(sample_weight_col)
174
- deps = set(SklearnWrapperProvider().dependencies)
193
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
175
194
 
176
195
  self._deps = list(deps)
177
196
 
@@ -189,13 +208,14 @@ class LassoLarsIC(BaseTransformer):
189
208
  args=init_args,
190
209
  klass=sklearn.linear_model.LassoLarsIC
191
210
  )
192
- self._sklearn_object = sklearn.linear_model.LassoLarsIC(
211
+ self._sklearn_object: Any = sklearn.linear_model.LassoLarsIC(
193
212
  **cleaned_up_init_args,
194
213
  )
195
214
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
196
215
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
197
216
  self._snowpark_cols: Optional[List[str]] = self.input_cols
198
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsIC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
217
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLarsIC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
218
+ self._autogenerated = True
199
219
 
200
220
  def _get_rand_id(self) -> str:
201
221
  """
@@ -206,24 +226,6 @@ class LassoLarsIC(BaseTransformer):
206
226
  """
207
227
  return str(uuid4()).replace("-", "_").upper()
208
228
 
209
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
210
- """
211
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
212
-
213
- Args:
214
- dataset: Input dataset.
215
- """
216
- if not self.input_cols:
217
- cols = [
218
- c for c in dataset.columns
219
- if c not in self.get_label_cols() and c != self.sample_weight_col
220
- ]
221
- self.set_input_cols(input_cols=cols)
222
-
223
- if not self.output_cols:
224
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
225
- self.set_output_cols(output_cols=cols)
226
-
227
229
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LassoLarsIC":
228
230
  """
229
231
  Input columns setter.
@@ -269,54 +271,48 @@ class LassoLarsIC(BaseTransformer):
269
271
  self
270
272
  """
271
273
  self._infer_input_output_cols(dataset)
272
- if isinstance(dataset, pd.DataFrame):
273
- assert self._sklearn_object is not None # keep mypy happy
274
- self._sklearn_object = self._handlers.fit_pandas(
275
- dataset,
276
- self._sklearn_object,
277
- self.input_cols,
278
- self.label_cols,
279
- self.sample_weight_col
280
- )
281
- elif isinstance(dataset, DataFrame):
282
- self._fit_snowpark(dataset)
283
- else:
284
- raise TypeError(
285
- f"Unexpected dataset type: {type(dataset)}."
286
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
287
- )
274
+ if isinstance(dataset, DataFrame):
275
+ session = dataset._session
276
+ assert session is not None # keep mypy happy
277
+ # Validate that key package version in user workspace are supported in snowflake conda channel
278
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
279
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
280
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
281
+
282
+ # Specify input columns so column pruning will be enforced
283
+ selected_cols = self._get_active_columns()
284
+ if len(selected_cols) > 0:
285
+ dataset = dataset.select(selected_cols)
286
+
287
+ self._snowpark_cols = dataset.select(self.input_cols).columns
288
+
289
+ # If we are already in a stored procedure, no need to kick off another one.
290
+ if SNOWML_SPROC_ENV in os.environ:
291
+ statement_params = telemetry.get_function_usage_statement_params(
292
+ project=_PROJECT,
293
+ subproject=_SUBPROJECT,
294
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsIC.__class__.__name__),
295
+ api_calls=[Session.call],
296
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
297
+ )
298
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
299
+ pd_df.columns = dataset.columns
300
+ dataset = pd_df
301
+
302
+ model_trainer = ModelTrainerBuilder.build(
303
+ estimator=self._sklearn_object,
304
+ dataset=dataset,
305
+ input_cols=self.input_cols,
306
+ label_cols=self.label_cols,
307
+ sample_weight_col=self.sample_weight_col,
308
+ autogenerated=self._autogenerated,
309
+ subproject=_SUBPROJECT
310
+ )
311
+ self._sklearn_object = model_trainer.train()
288
312
  self._is_fitted = True
289
313
  self._get_model_signatures(dataset)
290
314
  return self
291
315
 
292
- def _fit_snowpark(self, dataset: DataFrame) -> None:
293
- session = dataset._session
294
- assert session is not None # keep mypy happy
295
- # Validate that key package version in user workspace are supported in snowflake conda channel
296
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
297
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
298
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
299
-
300
- # Specify input columns so column pruning will be enforced
301
- selected_cols = self._get_active_columns()
302
- if len(selected_cols) > 0:
303
- dataset = dataset.select(selected_cols)
304
-
305
- estimator = self._sklearn_object
306
- assert estimator is not None # Keep mypy happy
307
-
308
- self._snowpark_cols = dataset.select(self.input_cols).columns
309
-
310
- self._sklearn_object = self._handlers.fit_snowpark(
311
- dataset,
312
- session,
313
- estimator,
314
- ["snowflake-snowpark-python"] + self._get_dependencies(),
315
- self.input_cols,
316
- self.label_cols,
317
- self.sample_weight_col,
318
- )
319
-
320
316
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
321
317
  if self._drop_input_cols:
322
318
  return []
@@ -504,11 +500,6 @@ class LassoLarsIC(BaseTransformer):
504
500
  subproject=_SUBPROJECT,
505
501
  custom_tags=dict([("autogen", True)]),
506
502
  )
507
- @telemetry.add_stmt_params_to_df(
508
- project=_PROJECT,
509
- subproject=_SUBPROJECT,
510
- custom_tags=dict([("autogen", True)]),
511
- )
512
503
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
513
504
  """Predict using the linear model
514
505
  For more details on this function, see [sklearn.linear_model.LassoLarsIC.predict]
@@ -562,11 +553,6 @@ class LassoLarsIC(BaseTransformer):
562
553
  subproject=_SUBPROJECT,
563
554
  custom_tags=dict([("autogen", True)]),
564
555
  )
565
- @telemetry.add_stmt_params_to_df(
566
- project=_PROJECT,
567
- subproject=_SUBPROJECT,
568
- custom_tags=dict([("autogen", True)]),
569
- )
570
556
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
571
557
  """Method not supported for this class.
572
558
 
@@ -623,7 +609,8 @@ class LassoLarsIC(BaseTransformer):
623
609
  if False:
624
610
  self.fit(dataset)
625
611
  assert self._sklearn_object is not None
626
- return self._sklearn_object.labels_
612
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
613
+ return labels
627
614
  else:
628
615
  raise NotImplementedError
629
616
 
@@ -659,6 +646,7 @@ class LassoLarsIC(BaseTransformer):
659
646
  output_cols = []
660
647
 
661
648
  # Make sure column names are valid snowflake identifiers.
649
+ assert output_cols is not None # Make MyPy happy
662
650
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
663
651
 
664
652
  return rv
@@ -669,11 +657,6 @@ class LassoLarsIC(BaseTransformer):
669
657
  subproject=_SUBPROJECT,
670
658
  custom_tags=dict([("autogen", True)]),
671
659
  )
672
- @telemetry.add_stmt_params_to_df(
673
- project=_PROJECT,
674
- subproject=_SUBPROJECT,
675
- custom_tags=dict([("autogen", True)]),
676
- )
677
660
  def predict_proba(
678
661
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
679
662
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -714,11 +697,6 @@ class LassoLarsIC(BaseTransformer):
714
697
  subproject=_SUBPROJECT,
715
698
  custom_tags=dict([("autogen", True)]),
716
699
  )
717
- @telemetry.add_stmt_params_to_df(
718
- project=_PROJECT,
719
- subproject=_SUBPROJECT,
720
- custom_tags=dict([("autogen", True)]),
721
- )
722
700
  def predict_log_proba(
723
701
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
724
702
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -755,16 +733,6 @@ class LassoLarsIC(BaseTransformer):
755
733
  return output_df
756
734
 
757
735
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
758
- @telemetry.send_api_usage_telemetry(
759
- project=_PROJECT,
760
- subproject=_SUBPROJECT,
761
- custom_tags=dict([("autogen", True)]),
762
- )
763
- @telemetry.add_stmt_params_to_df(
764
- project=_PROJECT,
765
- subproject=_SUBPROJECT,
766
- custom_tags=dict([("autogen", True)]),
767
- )
768
736
  def decision_function(
769
737
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
770
738
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -865,11 +833,6 @@ class LassoLarsIC(BaseTransformer):
865
833
  subproject=_SUBPROJECT,
866
834
  custom_tags=dict([("autogen", True)]),
867
835
  )
868
- @telemetry.add_stmt_params_to_df(
869
- project=_PROJECT,
870
- subproject=_SUBPROJECT,
871
- custom_tags=dict([("autogen", True)]),
872
- )
873
836
  def kneighbors(
874
837
  self,
875
838
  dataset: Union[DataFrame, pd.DataFrame],
@@ -929,18 +892,28 @@ class LassoLarsIC(BaseTransformer):
929
892
  # For classifier, the type of predict is the same as the type of label
930
893
  if self._sklearn_object._estimator_type == 'classifier':
931
894
  # label columns is the desired type for output
932
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
895
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
933
896
  # rename the output columns
934
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
897
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
935
898
  self._model_signature_dict["predict"] = ModelSignature(inputs,
936
899
  ([] if self._drop_input_cols else inputs)
937
900
  + outputs)
901
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
902
+ # For outlier models, returns -1 for outliers and 1 for inliers.
903
+ # Clusterer returns int64 cluster labels.
904
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
905
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
906
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
907
+ ([] if self._drop_input_cols else inputs)
908
+ + outputs)
909
+
938
910
  # For regressor, the type of predict is float64
939
911
  elif self._sklearn_object._estimator_type == 'regressor':
940
912
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
941
913
  self._model_signature_dict["predict"] = ModelSignature(inputs,
942
914
  ([] if self._drop_input_cols else inputs)
943
915
  + outputs)
916
+
944
917
  for prob_func in PROB_FUNCTIONS:
945
918
  if hasattr(self, prob_func):
946
919
  output_cols_prefix: str = f"{prob_func}_"