snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class TSNE(BaseTransformer):
57
58
  r"""T-distributed Stochastic Neighbor Embedding
58
59
  For more details on this class, see [sklearn.manifold.TSNE]
@@ -60,6 +61,49 @@ class TSNE(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=2
64
108
  Dimension of the embedded space.
65
109
 
@@ -162,35 +206,6 @@ class TSNE(BaseTransformer):
162
206
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
163
207
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
164
208
  for more details.
165
-
166
- input_cols: Optional[Union[str, List[str]]]
167
- A string or list of strings representing column names that contain features.
168
- If this parameter is not specified, all columns in the input DataFrame except
169
- the columns specified by label_cols and sample_weight_col parameters are
170
- considered input columns.
171
-
172
- label_cols: Optional[Union[str, List[str]]]
173
- A string or list of strings representing column names that contain labels.
174
- This is a required param for estimators, as there is no way to infer these
175
- columns. If this parameter is not specified, then object is fitted without
176
- labels (like a transformer).
177
-
178
- output_cols: Optional[Union[str, List[str]]]
179
- A string or list of strings representing column names that will store the
180
- output of predict and transform operations. The length of output_cols must
181
- match the expected number of output columns from the specific estimator or
182
- transformer class used.
183
- If this parameter is not specified, output column names are derived by
184
- adding an OUTPUT_ prefix to the label column names. These inferred output
185
- column names work for estimator's predict() method, but output_cols must
186
- be set explicitly for transformers.
187
-
188
- sample_weight_col: Optional[str]
189
- A string representing the column name containing the sample weights.
190
- This argument is only required when working with weighted datasets.
191
-
192
- drop_input_cols: Optional[bool], default=False
193
- If set, the response of predict(), transform() methods will not contain input columns.
194
209
  """
195
210
 
196
211
  def __init__( # type: ignore[no-untyped-def]
@@ -214,6 +229,7 @@ class TSNE(BaseTransformer):
214
229
  input_cols: Optional[Union[str, Iterable[str]]] = None,
215
230
  output_cols: Optional[Union[str, Iterable[str]]] = None,
216
231
  label_cols: Optional[Union[str, Iterable[str]]] = None,
232
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
217
233
  drop_input_cols: Optional[bool] = False,
218
234
  sample_weight_col: Optional[str] = None,
219
235
  ) -> None:
@@ -222,9 +238,10 @@ class TSNE(BaseTransformer):
222
238
  self.set_input_cols(input_cols)
223
239
  self.set_output_cols(output_cols)
224
240
  self.set_label_cols(label_cols)
241
+ self.set_passthrough_cols(passthrough_cols)
225
242
  self.set_drop_input_cols(drop_input_cols)
226
243
  self.set_sample_weight_col(sample_weight_col)
227
- deps = set(SklearnWrapperProvider().dependencies)
244
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
228
245
 
229
246
  self._deps = list(deps)
230
247
 
@@ -247,13 +264,14 @@ class TSNE(BaseTransformer):
247
264
  args=init_args,
248
265
  klass=sklearn.manifold.TSNE
249
266
  )
250
- self._sklearn_object = sklearn.manifold.TSNE(
267
+ self._sklearn_object: Any = sklearn.manifold.TSNE(
251
268
  **cleaned_up_init_args,
252
269
  )
253
270
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
254
271
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
255
272
  self._snowpark_cols: Optional[List[str]] = self.input_cols
256
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=TSNE.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
273
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=TSNE.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
274
+ self._autogenerated = True
257
275
 
258
276
  def _get_rand_id(self) -> str:
259
277
  """
@@ -264,24 +282,6 @@ class TSNE(BaseTransformer):
264
282
  """
265
283
  return str(uuid4()).replace("-", "_").upper()
266
284
 
267
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
268
- """
269
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
270
-
271
- Args:
272
- dataset: Input dataset.
273
- """
274
- if not self.input_cols:
275
- cols = [
276
- c for c in dataset.columns
277
- if c not in self.get_label_cols() and c != self.sample_weight_col
278
- ]
279
- self.set_input_cols(input_cols=cols)
280
-
281
- if not self.output_cols:
282
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
283
- self.set_output_cols(output_cols=cols)
284
-
285
285
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "TSNE":
286
286
  """
287
287
  Input columns setter.
@@ -327,54 +327,48 @@ class TSNE(BaseTransformer):
327
327
  self
328
328
  """
329
329
  self._infer_input_output_cols(dataset)
330
- if isinstance(dataset, pd.DataFrame):
331
- assert self._sklearn_object is not None # keep mypy happy
332
- self._sklearn_object = self._handlers.fit_pandas(
333
- dataset,
334
- self._sklearn_object,
335
- self.input_cols,
336
- self.label_cols,
337
- self.sample_weight_col
338
- )
339
- elif isinstance(dataset, DataFrame):
340
- self._fit_snowpark(dataset)
341
- else:
342
- raise TypeError(
343
- f"Unexpected dataset type: {type(dataset)}."
344
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
345
- )
330
+ if isinstance(dataset, DataFrame):
331
+ session = dataset._session
332
+ assert session is not None # keep mypy happy
333
+ # Validate that key package version in user workspace are supported in snowflake conda channel
334
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
335
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
336
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
337
+
338
+ # Specify input columns so column pruning will be enforced
339
+ selected_cols = self._get_active_columns()
340
+ if len(selected_cols) > 0:
341
+ dataset = dataset.select(selected_cols)
342
+
343
+ self._snowpark_cols = dataset.select(self.input_cols).columns
344
+
345
+ # If we are already in a stored procedure, no need to kick off another one.
346
+ if SNOWML_SPROC_ENV in os.environ:
347
+ statement_params = telemetry.get_function_usage_statement_params(
348
+ project=_PROJECT,
349
+ subproject=_SUBPROJECT,
350
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TSNE.__class__.__name__),
351
+ api_calls=[Session.call],
352
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
353
+ )
354
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
355
+ pd_df.columns = dataset.columns
356
+ dataset = pd_df
357
+
358
+ model_trainer = ModelTrainerBuilder.build(
359
+ estimator=self._sklearn_object,
360
+ dataset=dataset,
361
+ input_cols=self.input_cols,
362
+ label_cols=self.label_cols,
363
+ sample_weight_col=self.sample_weight_col,
364
+ autogenerated=self._autogenerated,
365
+ subproject=_SUBPROJECT
366
+ )
367
+ self._sklearn_object = model_trainer.train()
346
368
  self._is_fitted = True
347
369
  self._get_model_signatures(dataset)
348
370
  return self
349
371
 
350
- def _fit_snowpark(self, dataset: DataFrame) -> None:
351
- session = dataset._session
352
- assert session is not None # keep mypy happy
353
- # Validate that key package version in user workspace are supported in snowflake conda channel
354
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
355
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
356
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
357
-
358
- # Specify input columns so column pruning will be enforced
359
- selected_cols = self._get_active_columns()
360
- if len(selected_cols) > 0:
361
- dataset = dataset.select(selected_cols)
362
-
363
- estimator = self._sklearn_object
364
- assert estimator is not None # Keep mypy happy
365
-
366
- self._snowpark_cols = dataset.select(self.input_cols).columns
367
-
368
- self._sklearn_object = self._handlers.fit_snowpark(
369
- dataset,
370
- session,
371
- estimator,
372
- ["snowflake-snowpark-python"] + self._get_dependencies(),
373
- self.input_cols,
374
- self.label_cols,
375
- self.sample_weight_col,
376
- )
377
-
378
372
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
379
373
  if self._drop_input_cols:
380
374
  return []
@@ -562,11 +556,6 @@ class TSNE(BaseTransformer):
562
556
  subproject=_SUBPROJECT,
563
557
  custom_tags=dict([("autogen", True)]),
564
558
  )
565
- @telemetry.add_stmt_params_to_df(
566
- project=_PROJECT,
567
- subproject=_SUBPROJECT,
568
- custom_tags=dict([("autogen", True)]),
569
- )
570
559
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
571
560
  """Method not supported for this class.
572
561
 
@@ -618,11 +607,6 @@ class TSNE(BaseTransformer):
618
607
  subproject=_SUBPROJECT,
619
608
  custom_tags=dict([("autogen", True)]),
620
609
  )
621
- @telemetry.add_stmt_params_to_df(
622
- project=_PROJECT,
623
- subproject=_SUBPROJECT,
624
- custom_tags=dict([("autogen", True)]),
625
- )
626
610
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
627
611
  """Method not supported for this class.
628
612
 
@@ -679,7 +663,8 @@ class TSNE(BaseTransformer):
679
663
  if False:
680
664
  self.fit(dataset)
681
665
  assert self._sklearn_object is not None
682
- return self._sklearn_object.labels_
666
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
667
+ return labels
683
668
  else:
684
669
  raise NotImplementedError
685
670
 
@@ -715,6 +700,7 @@ class TSNE(BaseTransformer):
715
700
  output_cols = []
716
701
 
717
702
  # Make sure column names are valid snowflake identifiers.
703
+ assert output_cols is not None # Make MyPy happy
718
704
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
719
705
 
720
706
  return rv
@@ -725,11 +711,6 @@ class TSNE(BaseTransformer):
725
711
  subproject=_SUBPROJECT,
726
712
  custom_tags=dict([("autogen", True)]),
727
713
  )
728
- @telemetry.add_stmt_params_to_df(
729
- project=_PROJECT,
730
- subproject=_SUBPROJECT,
731
- custom_tags=dict([("autogen", True)]),
732
- )
733
714
  def predict_proba(
734
715
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
735
716
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -770,11 +751,6 @@ class TSNE(BaseTransformer):
770
751
  subproject=_SUBPROJECT,
771
752
  custom_tags=dict([("autogen", True)]),
772
753
  )
773
- @telemetry.add_stmt_params_to_df(
774
- project=_PROJECT,
775
- subproject=_SUBPROJECT,
776
- custom_tags=dict([("autogen", True)]),
777
- )
778
754
  def predict_log_proba(
779
755
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
780
756
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -811,16 +787,6 @@ class TSNE(BaseTransformer):
811
787
  return output_df
812
788
 
813
789
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
814
- @telemetry.send_api_usage_telemetry(
815
- project=_PROJECT,
816
- subproject=_SUBPROJECT,
817
- custom_tags=dict([("autogen", True)]),
818
- )
819
- @telemetry.add_stmt_params_to_df(
820
- project=_PROJECT,
821
- subproject=_SUBPROJECT,
822
- custom_tags=dict([("autogen", True)]),
823
- )
824
790
  def decision_function(
825
791
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
826
792
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -919,11 +885,6 @@ class TSNE(BaseTransformer):
919
885
  subproject=_SUBPROJECT,
920
886
  custom_tags=dict([("autogen", True)]),
921
887
  )
922
- @telemetry.add_stmt_params_to_df(
923
- project=_PROJECT,
924
- subproject=_SUBPROJECT,
925
- custom_tags=dict([("autogen", True)]),
926
- )
927
888
  def kneighbors(
928
889
  self,
929
890
  dataset: Union[DataFrame, pd.DataFrame],
@@ -983,18 +944,28 @@ class TSNE(BaseTransformer):
983
944
  # For classifier, the type of predict is the same as the type of label
984
945
  if self._sklearn_object._estimator_type == 'classifier':
985
946
  # label columns is the desired type for output
986
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
947
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
987
948
  # rename the output columns
988
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
949
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
950
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
951
+ ([] if self._drop_input_cols else inputs)
952
+ + outputs)
953
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
954
+ # For outlier models, returns -1 for outliers and 1 for inliers.
955
+ # Clusterer returns int64 cluster labels.
956
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
957
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
989
958
  self._model_signature_dict["predict"] = ModelSignature(inputs,
990
959
  ([] if self._drop_input_cols else inputs)
991
960
  + outputs)
961
+
992
962
  # For regressor, the type of predict is float64
993
963
  elif self._sklearn_object._estimator_type == 'regressor':
994
964
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
995
965
  self._model_signature_dict["predict"] = ModelSignature(inputs,
996
966
  ([] if self._drop_input_cols else inputs)
997
967
  + outputs)
968
+
998
969
  for prob_func in PROB_FUNCTIONS:
999
970
  if hasattr(self, prob_func):
1000
971
  output_cols_prefix: str = f"{prob_func}_"