snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class TSNE(BaseTransformer):
|
57
58
|
r"""T-distributed Stochastic Neighbor Embedding
|
58
59
|
For more details on this class, see [sklearn.manifold.TSNE]
|
@@ -60,6 +61,49 @@ class TSNE(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=2
|
64
108
|
Dimension of the embedded space.
|
65
109
|
|
@@ -162,35 +206,6 @@ class TSNE(BaseTransformer):
|
|
162
206
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
163
207
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
164
208
|
for more details.
|
165
|
-
|
166
|
-
input_cols: Optional[Union[str, List[str]]]
|
167
|
-
A string or list of strings representing column names that contain features.
|
168
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
169
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
170
|
-
considered input columns.
|
171
|
-
|
172
|
-
label_cols: Optional[Union[str, List[str]]]
|
173
|
-
A string or list of strings representing column names that contain labels.
|
174
|
-
This is a required param for estimators, as there is no way to infer these
|
175
|
-
columns. If this parameter is not specified, then object is fitted without
|
176
|
-
labels (like a transformer).
|
177
|
-
|
178
|
-
output_cols: Optional[Union[str, List[str]]]
|
179
|
-
A string or list of strings representing column names that will store the
|
180
|
-
output of predict and transform operations. The length of output_cols must
|
181
|
-
match the expected number of output columns from the specific estimator or
|
182
|
-
transformer class used.
|
183
|
-
If this parameter is not specified, output column names are derived by
|
184
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
185
|
-
column names work for estimator's predict() method, but output_cols must
|
186
|
-
be set explicitly for transformers.
|
187
|
-
|
188
|
-
sample_weight_col: Optional[str]
|
189
|
-
A string representing the column name containing the sample weights.
|
190
|
-
This argument is only required when working with weighted datasets.
|
191
|
-
|
192
|
-
drop_input_cols: Optional[bool], default=False
|
193
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
194
209
|
"""
|
195
210
|
|
196
211
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -214,6 +229,7 @@ class TSNE(BaseTransformer):
|
|
214
229
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
215
230
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
216
231
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
232
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
217
233
|
drop_input_cols: Optional[bool] = False,
|
218
234
|
sample_weight_col: Optional[str] = None,
|
219
235
|
) -> None:
|
@@ -222,9 +238,10 @@ class TSNE(BaseTransformer):
|
|
222
238
|
self.set_input_cols(input_cols)
|
223
239
|
self.set_output_cols(output_cols)
|
224
240
|
self.set_label_cols(label_cols)
|
241
|
+
self.set_passthrough_cols(passthrough_cols)
|
225
242
|
self.set_drop_input_cols(drop_input_cols)
|
226
243
|
self.set_sample_weight_col(sample_weight_col)
|
227
|
-
deps = set(
|
244
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
228
245
|
|
229
246
|
self._deps = list(deps)
|
230
247
|
|
@@ -247,13 +264,14 @@ class TSNE(BaseTransformer):
|
|
247
264
|
args=init_args,
|
248
265
|
klass=sklearn.manifold.TSNE
|
249
266
|
)
|
250
|
-
self._sklearn_object = sklearn.manifold.TSNE(
|
267
|
+
self._sklearn_object: Any = sklearn.manifold.TSNE(
|
251
268
|
**cleaned_up_init_args,
|
252
269
|
)
|
253
270
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
254
271
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
255
272
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
256
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TSNE.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
273
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TSNE.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
274
|
+
self._autogenerated = True
|
257
275
|
|
258
276
|
def _get_rand_id(self) -> str:
|
259
277
|
"""
|
@@ -264,24 +282,6 @@ class TSNE(BaseTransformer):
|
|
264
282
|
"""
|
265
283
|
return str(uuid4()).replace("-", "_").upper()
|
266
284
|
|
267
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
268
|
-
"""
|
269
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
270
|
-
|
271
|
-
Args:
|
272
|
-
dataset: Input dataset.
|
273
|
-
"""
|
274
|
-
if not self.input_cols:
|
275
|
-
cols = [
|
276
|
-
c for c in dataset.columns
|
277
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
278
|
-
]
|
279
|
-
self.set_input_cols(input_cols=cols)
|
280
|
-
|
281
|
-
if not self.output_cols:
|
282
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
283
|
-
self.set_output_cols(output_cols=cols)
|
284
|
-
|
285
285
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "TSNE":
|
286
286
|
"""
|
287
287
|
Input columns setter.
|
@@ -327,54 +327,48 @@ class TSNE(BaseTransformer):
|
|
327
327
|
self
|
328
328
|
"""
|
329
329
|
self._infer_input_output_cols(dataset)
|
330
|
-
if isinstance(dataset,
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
self.
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
330
|
+
if isinstance(dataset, DataFrame):
|
331
|
+
session = dataset._session
|
332
|
+
assert session is not None # keep mypy happy
|
333
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
334
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
335
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
336
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
337
|
+
|
338
|
+
# Specify input columns so column pruning will be enforced
|
339
|
+
selected_cols = self._get_active_columns()
|
340
|
+
if len(selected_cols) > 0:
|
341
|
+
dataset = dataset.select(selected_cols)
|
342
|
+
|
343
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
344
|
+
|
345
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
346
|
+
if SNOWML_SPROC_ENV in os.environ:
|
347
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
348
|
+
project=_PROJECT,
|
349
|
+
subproject=_SUBPROJECT,
|
350
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TSNE.__class__.__name__),
|
351
|
+
api_calls=[Session.call],
|
352
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
353
|
+
)
|
354
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
355
|
+
pd_df.columns = dataset.columns
|
356
|
+
dataset = pd_df
|
357
|
+
|
358
|
+
model_trainer = ModelTrainerBuilder.build(
|
359
|
+
estimator=self._sklearn_object,
|
360
|
+
dataset=dataset,
|
361
|
+
input_cols=self.input_cols,
|
362
|
+
label_cols=self.label_cols,
|
363
|
+
sample_weight_col=self.sample_weight_col,
|
364
|
+
autogenerated=self._autogenerated,
|
365
|
+
subproject=_SUBPROJECT
|
366
|
+
)
|
367
|
+
self._sklearn_object = model_trainer.train()
|
346
368
|
self._is_fitted = True
|
347
369
|
self._get_model_signatures(dataset)
|
348
370
|
return self
|
349
371
|
|
350
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
351
|
-
session = dataset._session
|
352
|
-
assert session is not None # keep mypy happy
|
353
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
354
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
355
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
356
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
357
|
-
|
358
|
-
# Specify input columns so column pruning will be enforced
|
359
|
-
selected_cols = self._get_active_columns()
|
360
|
-
if len(selected_cols) > 0:
|
361
|
-
dataset = dataset.select(selected_cols)
|
362
|
-
|
363
|
-
estimator = self._sklearn_object
|
364
|
-
assert estimator is not None # Keep mypy happy
|
365
|
-
|
366
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
367
|
-
|
368
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
369
|
-
dataset,
|
370
|
-
session,
|
371
|
-
estimator,
|
372
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
373
|
-
self.input_cols,
|
374
|
-
self.label_cols,
|
375
|
-
self.sample_weight_col,
|
376
|
-
)
|
377
|
-
|
378
372
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
379
373
|
if self._drop_input_cols:
|
380
374
|
return []
|
@@ -562,11 +556,6 @@ class TSNE(BaseTransformer):
|
|
562
556
|
subproject=_SUBPROJECT,
|
563
557
|
custom_tags=dict([("autogen", True)]),
|
564
558
|
)
|
565
|
-
@telemetry.add_stmt_params_to_df(
|
566
|
-
project=_PROJECT,
|
567
|
-
subproject=_SUBPROJECT,
|
568
|
-
custom_tags=dict([("autogen", True)]),
|
569
|
-
)
|
570
559
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
571
560
|
"""Method not supported for this class.
|
572
561
|
|
@@ -618,11 +607,6 @@ class TSNE(BaseTransformer):
|
|
618
607
|
subproject=_SUBPROJECT,
|
619
608
|
custom_tags=dict([("autogen", True)]),
|
620
609
|
)
|
621
|
-
@telemetry.add_stmt_params_to_df(
|
622
|
-
project=_PROJECT,
|
623
|
-
subproject=_SUBPROJECT,
|
624
|
-
custom_tags=dict([("autogen", True)]),
|
625
|
-
)
|
626
610
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
627
611
|
"""Method not supported for this class.
|
628
612
|
|
@@ -679,7 +663,8 @@ class TSNE(BaseTransformer):
|
|
679
663
|
if False:
|
680
664
|
self.fit(dataset)
|
681
665
|
assert self._sklearn_object is not None
|
682
|
-
|
666
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
667
|
+
return labels
|
683
668
|
else:
|
684
669
|
raise NotImplementedError
|
685
670
|
|
@@ -715,6 +700,7 @@ class TSNE(BaseTransformer):
|
|
715
700
|
output_cols = []
|
716
701
|
|
717
702
|
# Make sure column names are valid snowflake identifiers.
|
703
|
+
assert output_cols is not None # Make MyPy happy
|
718
704
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
719
705
|
|
720
706
|
return rv
|
@@ -725,11 +711,6 @@ class TSNE(BaseTransformer):
|
|
725
711
|
subproject=_SUBPROJECT,
|
726
712
|
custom_tags=dict([("autogen", True)]),
|
727
713
|
)
|
728
|
-
@telemetry.add_stmt_params_to_df(
|
729
|
-
project=_PROJECT,
|
730
|
-
subproject=_SUBPROJECT,
|
731
|
-
custom_tags=dict([("autogen", True)]),
|
732
|
-
)
|
733
714
|
def predict_proba(
|
734
715
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
735
716
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -770,11 +751,6 @@ class TSNE(BaseTransformer):
|
|
770
751
|
subproject=_SUBPROJECT,
|
771
752
|
custom_tags=dict([("autogen", True)]),
|
772
753
|
)
|
773
|
-
@telemetry.add_stmt_params_to_df(
|
774
|
-
project=_PROJECT,
|
775
|
-
subproject=_SUBPROJECT,
|
776
|
-
custom_tags=dict([("autogen", True)]),
|
777
|
-
)
|
778
754
|
def predict_log_proba(
|
779
755
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
780
756
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -811,16 +787,6 @@ class TSNE(BaseTransformer):
|
|
811
787
|
return output_df
|
812
788
|
|
813
789
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
814
|
-
@telemetry.send_api_usage_telemetry(
|
815
|
-
project=_PROJECT,
|
816
|
-
subproject=_SUBPROJECT,
|
817
|
-
custom_tags=dict([("autogen", True)]),
|
818
|
-
)
|
819
|
-
@telemetry.add_stmt_params_to_df(
|
820
|
-
project=_PROJECT,
|
821
|
-
subproject=_SUBPROJECT,
|
822
|
-
custom_tags=dict([("autogen", True)]),
|
823
|
-
)
|
824
790
|
def decision_function(
|
825
791
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
826
792
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -919,11 +885,6 @@ class TSNE(BaseTransformer):
|
|
919
885
|
subproject=_SUBPROJECT,
|
920
886
|
custom_tags=dict([("autogen", True)]),
|
921
887
|
)
|
922
|
-
@telemetry.add_stmt_params_to_df(
|
923
|
-
project=_PROJECT,
|
924
|
-
subproject=_SUBPROJECT,
|
925
|
-
custom_tags=dict([("autogen", True)]),
|
926
|
-
)
|
927
888
|
def kneighbors(
|
928
889
|
self,
|
929
890
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -983,18 +944,28 @@ class TSNE(BaseTransformer):
|
|
983
944
|
# For classifier, the type of predict is the same as the type of label
|
984
945
|
if self._sklearn_object._estimator_type == 'classifier':
|
985
946
|
# label columns is the desired type for output
|
986
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
947
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
987
948
|
# rename the output columns
|
988
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
949
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
950
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
951
|
+
([] if self._drop_input_cols else inputs)
|
952
|
+
+ outputs)
|
953
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
954
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
955
|
+
# Clusterer returns int64 cluster labels.
|
956
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
957
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
989
958
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
990
959
|
([] if self._drop_input_cols else inputs)
|
991
960
|
+ outputs)
|
961
|
+
|
992
962
|
# For regressor, the type of predict is float64
|
993
963
|
elif self._sklearn_object._estimator_type == 'regressor':
|
994
964
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
995
965
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
996
966
|
([] if self._drop_input_cols else inputs)
|
997
967
|
+ outputs)
|
968
|
+
|
998
969
|
for prob_func in PROB_FUNCTIONS:
|
999
970
|
if hasattr(self, prob_func):
|
1000
971
|
output_cols_prefix: str = f"{prob_func}_"
|