snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class AffinityPropagation(BaseTransformer):
57
58
  r"""Perform Affinity Propagation Clustering of data
58
59
  For more details on this class, see [sklearn.cluster.AffinityPropagation]
@@ -60,6 +61,49 @@ class AffinityPropagation(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  damping: float, default=0.5
64
108
  Damping factor in the range `[0.5, 1.0)` is the extent to
65
109
  which the current value is maintained relative to
@@ -96,35 +140,6 @@ class AffinityPropagation(BaseTransformer):
96
140
  Pseudo-random number generator to control the starting state.
97
141
  Use an int for reproducible results across function calls.
98
142
  See the :term:`Glossary <random_state>`.
99
-
100
- input_cols: Optional[Union[str, List[str]]]
101
- A string or list of strings representing column names that contain features.
102
- If this parameter is not specified, all columns in the input DataFrame except
103
- the columns specified by label_cols and sample_weight_col parameters are
104
- considered input columns.
105
-
106
- label_cols: Optional[Union[str, List[str]]]
107
- A string or list of strings representing column names that contain labels.
108
- This is a required param for estimators, as there is no way to infer these
109
- columns. If this parameter is not specified, then object is fitted without
110
- labels (like a transformer).
111
-
112
- output_cols: Optional[Union[str, List[str]]]
113
- A string or list of strings representing column names that will store the
114
- output of predict and transform operations. The length of output_cols must
115
- match the expected number of output columns from the specific estimator or
116
- transformer class used.
117
- If this parameter is not specified, output column names are derived by
118
- adding an OUTPUT_ prefix to the label column names. These inferred output
119
- column names work for estimator's predict() method, but output_cols must
120
- be set explicitly for transformers.
121
-
122
- sample_weight_col: Optional[str]
123
- A string representing the column name containing the sample weights.
124
- This argument is only required when working with weighted datasets.
125
-
126
- drop_input_cols: Optional[bool], default=False
127
- If set, the response of predict(), transform() methods will not contain input columns.
128
143
  """
129
144
 
130
145
  def __init__( # type: ignore[no-untyped-def]
@@ -141,6 +156,7 @@ class AffinityPropagation(BaseTransformer):
141
156
  input_cols: Optional[Union[str, Iterable[str]]] = None,
142
157
  output_cols: Optional[Union[str, Iterable[str]]] = None,
143
158
  label_cols: Optional[Union[str, Iterable[str]]] = None,
159
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
144
160
  drop_input_cols: Optional[bool] = False,
145
161
  sample_weight_col: Optional[str] = None,
146
162
  ) -> None:
@@ -149,9 +165,10 @@ class AffinityPropagation(BaseTransformer):
149
165
  self.set_input_cols(input_cols)
150
166
  self.set_output_cols(output_cols)
151
167
  self.set_label_cols(label_cols)
168
+ self.set_passthrough_cols(passthrough_cols)
152
169
  self.set_drop_input_cols(drop_input_cols)
153
170
  self.set_sample_weight_col(sample_weight_col)
154
- deps = set(SklearnWrapperProvider().dependencies)
171
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
155
172
 
156
173
  self._deps = list(deps)
157
174
 
@@ -167,13 +184,14 @@ class AffinityPropagation(BaseTransformer):
167
184
  args=init_args,
168
185
  klass=sklearn.cluster.AffinityPropagation
169
186
  )
170
- self._sklearn_object = sklearn.cluster.AffinityPropagation(
187
+ self._sklearn_object: Any = sklearn.cluster.AffinityPropagation(
171
188
  **cleaned_up_init_args,
172
189
  )
173
190
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
174
191
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
175
192
  self._snowpark_cols: Optional[List[str]] = self.input_cols
176
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AffinityPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
193
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=AffinityPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
194
+ self._autogenerated = True
177
195
 
178
196
  def _get_rand_id(self) -> str:
179
197
  """
@@ -184,24 +202,6 @@ class AffinityPropagation(BaseTransformer):
184
202
  """
185
203
  return str(uuid4()).replace("-", "_").upper()
186
204
 
187
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
188
- """
189
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
190
-
191
- Args:
192
- dataset: Input dataset.
193
- """
194
- if not self.input_cols:
195
- cols = [
196
- c for c in dataset.columns
197
- if c not in self.get_label_cols() and c != self.sample_weight_col
198
- ]
199
- self.set_input_cols(input_cols=cols)
200
-
201
- if not self.output_cols:
202
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
203
- self.set_output_cols(output_cols=cols)
204
-
205
205
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "AffinityPropagation":
206
206
  """
207
207
  Input columns setter.
@@ -247,54 +247,48 @@ class AffinityPropagation(BaseTransformer):
247
247
  self
248
248
  """
249
249
  self._infer_input_output_cols(dataset)
250
- if isinstance(dataset, pd.DataFrame):
251
- assert self._sklearn_object is not None # keep mypy happy
252
- self._sklearn_object = self._handlers.fit_pandas(
253
- dataset,
254
- self._sklearn_object,
255
- self.input_cols,
256
- self.label_cols,
257
- self.sample_weight_col
258
- )
259
- elif isinstance(dataset, DataFrame):
260
- self._fit_snowpark(dataset)
261
- else:
262
- raise TypeError(
263
- f"Unexpected dataset type: {type(dataset)}."
264
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
265
- )
250
+ if isinstance(dataset, DataFrame):
251
+ session = dataset._session
252
+ assert session is not None # keep mypy happy
253
+ # Validate that key package version in user workspace are supported in snowflake conda channel
254
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
255
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
256
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
257
+
258
+ # Specify input columns so column pruning will be enforced
259
+ selected_cols = self._get_active_columns()
260
+ if len(selected_cols) > 0:
261
+ dataset = dataset.select(selected_cols)
262
+
263
+ self._snowpark_cols = dataset.select(self.input_cols).columns
264
+
265
+ # If we are already in a stored procedure, no need to kick off another one.
266
+ if SNOWML_SPROC_ENV in os.environ:
267
+ statement_params = telemetry.get_function_usage_statement_params(
268
+ project=_PROJECT,
269
+ subproject=_SUBPROJECT,
270
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AffinityPropagation.__class__.__name__),
271
+ api_calls=[Session.call],
272
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
273
+ )
274
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
275
+ pd_df.columns = dataset.columns
276
+ dataset = pd_df
277
+
278
+ model_trainer = ModelTrainerBuilder.build(
279
+ estimator=self._sklearn_object,
280
+ dataset=dataset,
281
+ input_cols=self.input_cols,
282
+ label_cols=self.label_cols,
283
+ sample_weight_col=self.sample_weight_col,
284
+ autogenerated=self._autogenerated,
285
+ subproject=_SUBPROJECT
286
+ )
287
+ self._sklearn_object = model_trainer.train()
266
288
  self._is_fitted = True
267
289
  self._get_model_signatures(dataset)
268
290
  return self
269
291
 
270
- def _fit_snowpark(self, dataset: DataFrame) -> None:
271
- session = dataset._session
272
- assert session is not None # keep mypy happy
273
- # Validate that key package version in user workspace are supported in snowflake conda channel
274
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
275
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
276
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
277
-
278
- # Specify input columns so column pruning will be enforced
279
- selected_cols = self._get_active_columns()
280
- if len(selected_cols) > 0:
281
- dataset = dataset.select(selected_cols)
282
-
283
- estimator = self._sklearn_object
284
- assert estimator is not None # Keep mypy happy
285
-
286
- self._snowpark_cols = dataset.select(self.input_cols).columns
287
-
288
- self._sklearn_object = self._handlers.fit_snowpark(
289
- dataset,
290
- session,
291
- estimator,
292
- ["snowflake-snowpark-python"] + self._get_dependencies(),
293
- self.input_cols,
294
- self.label_cols,
295
- self.sample_weight_col,
296
- )
297
-
298
292
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
299
293
  if self._drop_input_cols:
300
294
  return []
@@ -482,11 +476,6 @@ class AffinityPropagation(BaseTransformer):
482
476
  subproject=_SUBPROJECT,
483
477
  custom_tags=dict([("autogen", True)]),
484
478
  )
485
- @telemetry.add_stmt_params_to_df(
486
- project=_PROJECT,
487
- subproject=_SUBPROJECT,
488
- custom_tags=dict([("autogen", True)]),
489
- )
490
479
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
491
480
  """Predict the closest cluster each sample in X belongs to
492
481
  For more details on this function, see [sklearn.cluster.AffinityPropagation.predict]
@@ -540,11 +529,6 @@ class AffinityPropagation(BaseTransformer):
540
529
  subproject=_SUBPROJECT,
541
530
  custom_tags=dict([("autogen", True)]),
542
531
  )
543
- @telemetry.add_stmt_params_to_df(
544
- project=_PROJECT,
545
- subproject=_SUBPROJECT,
546
- custom_tags=dict([("autogen", True)]),
547
- )
548
532
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
549
533
  """Method not supported for this class.
550
534
 
@@ -603,7 +587,8 @@ class AffinityPropagation(BaseTransformer):
603
587
  if True:
604
588
  self.fit(dataset)
605
589
  assert self._sklearn_object is not None
606
- return self._sklearn_object.labels_
590
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
591
+ return labels
607
592
  else:
608
593
  raise NotImplementedError
609
594
 
@@ -639,6 +624,7 @@ class AffinityPropagation(BaseTransformer):
639
624
  output_cols = []
640
625
 
641
626
  # Make sure column names are valid snowflake identifiers.
627
+ assert output_cols is not None # Make MyPy happy
642
628
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
643
629
 
644
630
  return rv
@@ -649,11 +635,6 @@ class AffinityPropagation(BaseTransformer):
649
635
  subproject=_SUBPROJECT,
650
636
  custom_tags=dict([("autogen", True)]),
651
637
  )
652
- @telemetry.add_stmt_params_to_df(
653
- project=_PROJECT,
654
- subproject=_SUBPROJECT,
655
- custom_tags=dict([("autogen", True)]),
656
- )
657
638
  def predict_proba(
658
639
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
659
640
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -694,11 +675,6 @@ class AffinityPropagation(BaseTransformer):
694
675
  subproject=_SUBPROJECT,
695
676
  custom_tags=dict([("autogen", True)]),
696
677
  )
697
- @telemetry.add_stmt_params_to_df(
698
- project=_PROJECT,
699
- subproject=_SUBPROJECT,
700
- custom_tags=dict([("autogen", True)]),
701
- )
702
678
  def predict_log_proba(
703
679
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
704
680
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -735,16 +711,6 @@ class AffinityPropagation(BaseTransformer):
735
711
  return output_df
736
712
 
737
713
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
738
- @telemetry.send_api_usage_telemetry(
739
- project=_PROJECT,
740
- subproject=_SUBPROJECT,
741
- custom_tags=dict([("autogen", True)]),
742
- )
743
- @telemetry.add_stmt_params_to_df(
744
- project=_PROJECT,
745
- subproject=_SUBPROJECT,
746
- custom_tags=dict([("autogen", True)]),
747
- )
748
714
  def decision_function(
749
715
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
750
716
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -843,11 +809,6 @@ class AffinityPropagation(BaseTransformer):
843
809
  subproject=_SUBPROJECT,
844
810
  custom_tags=dict([("autogen", True)]),
845
811
  )
846
- @telemetry.add_stmt_params_to_df(
847
- project=_PROJECT,
848
- subproject=_SUBPROJECT,
849
- custom_tags=dict([("autogen", True)]),
850
- )
851
812
  def kneighbors(
852
813
  self,
853
814
  dataset: Union[DataFrame, pd.DataFrame],
@@ -907,18 +868,28 @@ class AffinityPropagation(BaseTransformer):
907
868
  # For classifier, the type of predict is the same as the type of label
908
869
  if self._sklearn_object._estimator_type == 'classifier':
909
870
  # label columns is the desired type for output
910
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
871
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
911
872
  # rename the output columns
912
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
873
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
874
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
875
+ ([] if self._drop_input_cols else inputs)
876
+ + outputs)
877
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
878
+ # For outlier models, returns -1 for outliers and 1 for inliers.
879
+ # Clusterer returns int64 cluster labels.
880
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
881
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
913
882
  self._model_signature_dict["predict"] = ModelSignature(inputs,
914
883
  ([] if self._drop_input_cols else inputs)
915
884
  + outputs)
885
+
916
886
  # For regressor, the type of predict is float64
917
887
  elif self._sklearn_object._estimator_type == 'regressor':
918
888
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
919
889
  self._model_signature_dict["predict"] = ModelSignature(inputs,
920
890
  ([] if self._drop_input_cols else inputs)
921
891
  + outputs)
892
+
922
893
  for prob_func in PROB_FUNCTIONS:
923
894
  if hasattr(self, prob_func):
924
895
  output_cols_prefix: str = f"{prob_func}_"