snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class AffinityPropagation(BaseTransformer):
|
57
58
|
r"""Perform Affinity Propagation Clustering of data
|
58
59
|
For more details on this class, see [sklearn.cluster.AffinityPropagation]
|
@@ -60,6 +61,49 @@ class AffinityPropagation(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
damping: float, default=0.5
|
64
108
|
Damping factor in the range `[0.5, 1.0)` is the extent to
|
65
109
|
which the current value is maintained relative to
|
@@ -96,35 +140,6 @@ class AffinityPropagation(BaseTransformer):
|
|
96
140
|
Pseudo-random number generator to control the starting state.
|
97
141
|
Use an int for reproducible results across function calls.
|
98
142
|
See the :term:`Glossary <random_state>`.
|
99
|
-
|
100
|
-
input_cols: Optional[Union[str, List[str]]]
|
101
|
-
A string or list of strings representing column names that contain features.
|
102
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
103
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
104
|
-
considered input columns.
|
105
|
-
|
106
|
-
label_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that contain labels.
|
108
|
-
This is a required param for estimators, as there is no way to infer these
|
109
|
-
columns. If this parameter is not specified, then object is fitted without
|
110
|
-
labels (like a transformer).
|
111
|
-
|
112
|
-
output_cols: Optional[Union[str, List[str]]]
|
113
|
-
A string or list of strings representing column names that will store the
|
114
|
-
output of predict and transform operations. The length of output_cols must
|
115
|
-
match the expected number of output columns from the specific estimator or
|
116
|
-
transformer class used.
|
117
|
-
If this parameter is not specified, output column names are derived by
|
118
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
119
|
-
column names work for estimator's predict() method, but output_cols must
|
120
|
-
be set explicitly for transformers.
|
121
|
-
|
122
|
-
sample_weight_col: Optional[str]
|
123
|
-
A string representing the column name containing the sample weights.
|
124
|
-
This argument is only required when working with weighted datasets.
|
125
|
-
|
126
|
-
drop_input_cols: Optional[bool], default=False
|
127
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
128
143
|
"""
|
129
144
|
|
130
145
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -141,6 +156,7 @@ class AffinityPropagation(BaseTransformer):
|
|
141
156
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
142
157
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
143
158
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
159
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
144
160
|
drop_input_cols: Optional[bool] = False,
|
145
161
|
sample_weight_col: Optional[str] = None,
|
146
162
|
) -> None:
|
@@ -149,9 +165,10 @@ class AffinityPropagation(BaseTransformer):
|
|
149
165
|
self.set_input_cols(input_cols)
|
150
166
|
self.set_output_cols(output_cols)
|
151
167
|
self.set_label_cols(label_cols)
|
168
|
+
self.set_passthrough_cols(passthrough_cols)
|
152
169
|
self.set_drop_input_cols(drop_input_cols)
|
153
170
|
self.set_sample_weight_col(sample_weight_col)
|
154
|
-
deps = set(
|
171
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
155
172
|
|
156
173
|
self._deps = list(deps)
|
157
174
|
|
@@ -167,13 +184,14 @@ class AffinityPropagation(BaseTransformer):
|
|
167
184
|
args=init_args,
|
168
185
|
klass=sklearn.cluster.AffinityPropagation
|
169
186
|
)
|
170
|
-
self._sklearn_object = sklearn.cluster.AffinityPropagation(
|
187
|
+
self._sklearn_object: Any = sklearn.cluster.AffinityPropagation(
|
171
188
|
**cleaned_up_init_args,
|
172
189
|
)
|
173
190
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
174
191
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
175
192
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
176
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AffinityPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
193
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AffinityPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
194
|
+
self._autogenerated = True
|
177
195
|
|
178
196
|
def _get_rand_id(self) -> str:
|
179
197
|
"""
|
@@ -184,24 +202,6 @@ class AffinityPropagation(BaseTransformer):
|
|
184
202
|
"""
|
185
203
|
return str(uuid4()).replace("-", "_").upper()
|
186
204
|
|
187
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
188
|
-
"""
|
189
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
190
|
-
|
191
|
-
Args:
|
192
|
-
dataset: Input dataset.
|
193
|
-
"""
|
194
|
-
if not self.input_cols:
|
195
|
-
cols = [
|
196
|
-
c for c in dataset.columns
|
197
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
198
|
-
]
|
199
|
-
self.set_input_cols(input_cols=cols)
|
200
|
-
|
201
|
-
if not self.output_cols:
|
202
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
203
|
-
self.set_output_cols(output_cols=cols)
|
204
|
-
|
205
205
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "AffinityPropagation":
|
206
206
|
"""
|
207
207
|
Input columns setter.
|
@@ -247,54 +247,48 @@ class AffinityPropagation(BaseTransformer):
|
|
247
247
|
self
|
248
248
|
"""
|
249
249
|
self._infer_input_output_cols(dataset)
|
250
|
-
if isinstance(dataset,
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
self.
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
250
|
+
if isinstance(dataset, DataFrame):
|
251
|
+
session = dataset._session
|
252
|
+
assert session is not None # keep mypy happy
|
253
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
254
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
255
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
256
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
257
|
+
|
258
|
+
# Specify input columns so column pruning will be enforced
|
259
|
+
selected_cols = self._get_active_columns()
|
260
|
+
if len(selected_cols) > 0:
|
261
|
+
dataset = dataset.select(selected_cols)
|
262
|
+
|
263
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
264
|
+
|
265
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
266
|
+
if SNOWML_SPROC_ENV in os.environ:
|
267
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
268
|
+
project=_PROJECT,
|
269
|
+
subproject=_SUBPROJECT,
|
270
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AffinityPropagation.__class__.__name__),
|
271
|
+
api_calls=[Session.call],
|
272
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
273
|
+
)
|
274
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
275
|
+
pd_df.columns = dataset.columns
|
276
|
+
dataset = pd_df
|
277
|
+
|
278
|
+
model_trainer = ModelTrainerBuilder.build(
|
279
|
+
estimator=self._sklearn_object,
|
280
|
+
dataset=dataset,
|
281
|
+
input_cols=self.input_cols,
|
282
|
+
label_cols=self.label_cols,
|
283
|
+
sample_weight_col=self.sample_weight_col,
|
284
|
+
autogenerated=self._autogenerated,
|
285
|
+
subproject=_SUBPROJECT
|
286
|
+
)
|
287
|
+
self._sklearn_object = model_trainer.train()
|
266
288
|
self._is_fitted = True
|
267
289
|
self._get_model_signatures(dataset)
|
268
290
|
return self
|
269
291
|
|
270
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
271
|
-
session = dataset._session
|
272
|
-
assert session is not None # keep mypy happy
|
273
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
274
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
275
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
276
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
277
|
-
|
278
|
-
# Specify input columns so column pruning will be enforced
|
279
|
-
selected_cols = self._get_active_columns()
|
280
|
-
if len(selected_cols) > 0:
|
281
|
-
dataset = dataset.select(selected_cols)
|
282
|
-
|
283
|
-
estimator = self._sklearn_object
|
284
|
-
assert estimator is not None # Keep mypy happy
|
285
|
-
|
286
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
287
|
-
|
288
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
289
|
-
dataset,
|
290
|
-
session,
|
291
|
-
estimator,
|
292
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
293
|
-
self.input_cols,
|
294
|
-
self.label_cols,
|
295
|
-
self.sample_weight_col,
|
296
|
-
)
|
297
|
-
|
298
292
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
299
293
|
if self._drop_input_cols:
|
300
294
|
return []
|
@@ -482,11 +476,6 @@ class AffinityPropagation(BaseTransformer):
|
|
482
476
|
subproject=_SUBPROJECT,
|
483
477
|
custom_tags=dict([("autogen", True)]),
|
484
478
|
)
|
485
|
-
@telemetry.add_stmt_params_to_df(
|
486
|
-
project=_PROJECT,
|
487
|
-
subproject=_SUBPROJECT,
|
488
|
-
custom_tags=dict([("autogen", True)]),
|
489
|
-
)
|
490
479
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
491
480
|
"""Predict the closest cluster each sample in X belongs to
|
492
481
|
For more details on this function, see [sklearn.cluster.AffinityPropagation.predict]
|
@@ -540,11 +529,6 @@ class AffinityPropagation(BaseTransformer):
|
|
540
529
|
subproject=_SUBPROJECT,
|
541
530
|
custom_tags=dict([("autogen", True)]),
|
542
531
|
)
|
543
|
-
@telemetry.add_stmt_params_to_df(
|
544
|
-
project=_PROJECT,
|
545
|
-
subproject=_SUBPROJECT,
|
546
|
-
custom_tags=dict([("autogen", True)]),
|
547
|
-
)
|
548
532
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
549
533
|
"""Method not supported for this class.
|
550
534
|
|
@@ -603,7 +587,8 @@ class AffinityPropagation(BaseTransformer):
|
|
603
587
|
if True:
|
604
588
|
self.fit(dataset)
|
605
589
|
assert self._sklearn_object is not None
|
606
|
-
|
590
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
591
|
+
return labels
|
607
592
|
else:
|
608
593
|
raise NotImplementedError
|
609
594
|
|
@@ -639,6 +624,7 @@ class AffinityPropagation(BaseTransformer):
|
|
639
624
|
output_cols = []
|
640
625
|
|
641
626
|
# Make sure column names are valid snowflake identifiers.
|
627
|
+
assert output_cols is not None # Make MyPy happy
|
642
628
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
643
629
|
|
644
630
|
return rv
|
@@ -649,11 +635,6 @@ class AffinityPropagation(BaseTransformer):
|
|
649
635
|
subproject=_SUBPROJECT,
|
650
636
|
custom_tags=dict([("autogen", True)]),
|
651
637
|
)
|
652
|
-
@telemetry.add_stmt_params_to_df(
|
653
|
-
project=_PROJECT,
|
654
|
-
subproject=_SUBPROJECT,
|
655
|
-
custom_tags=dict([("autogen", True)]),
|
656
|
-
)
|
657
638
|
def predict_proba(
|
658
639
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
659
640
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -694,11 +675,6 @@ class AffinityPropagation(BaseTransformer):
|
|
694
675
|
subproject=_SUBPROJECT,
|
695
676
|
custom_tags=dict([("autogen", True)]),
|
696
677
|
)
|
697
|
-
@telemetry.add_stmt_params_to_df(
|
698
|
-
project=_PROJECT,
|
699
|
-
subproject=_SUBPROJECT,
|
700
|
-
custom_tags=dict([("autogen", True)]),
|
701
|
-
)
|
702
678
|
def predict_log_proba(
|
703
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
704
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -735,16 +711,6 @@ class AffinityPropagation(BaseTransformer):
|
|
735
711
|
return output_df
|
736
712
|
|
737
713
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
738
|
-
@telemetry.send_api_usage_telemetry(
|
739
|
-
project=_PROJECT,
|
740
|
-
subproject=_SUBPROJECT,
|
741
|
-
custom_tags=dict([("autogen", True)]),
|
742
|
-
)
|
743
|
-
@telemetry.add_stmt_params_to_df(
|
744
|
-
project=_PROJECT,
|
745
|
-
subproject=_SUBPROJECT,
|
746
|
-
custom_tags=dict([("autogen", True)]),
|
747
|
-
)
|
748
714
|
def decision_function(
|
749
715
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
750
716
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -843,11 +809,6 @@ class AffinityPropagation(BaseTransformer):
|
|
843
809
|
subproject=_SUBPROJECT,
|
844
810
|
custom_tags=dict([("autogen", True)]),
|
845
811
|
)
|
846
|
-
@telemetry.add_stmt_params_to_df(
|
847
|
-
project=_PROJECT,
|
848
|
-
subproject=_SUBPROJECT,
|
849
|
-
custom_tags=dict([("autogen", True)]),
|
850
|
-
)
|
851
812
|
def kneighbors(
|
852
813
|
self,
|
853
814
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -907,18 +868,28 @@ class AffinityPropagation(BaseTransformer):
|
|
907
868
|
# For classifier, the type of predict is the same as the type of label
|
908
869
|
if self._sklearn_object._estimator_type == 'classifier':
|
909
870
|
# label columns is the desired type for output
|
910
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
871
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
911
872
|
# rename the output columns
|
912
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
873
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
874
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
875
|
+
([] if self._drop_input_cols else inputs)
|
876
|
+
+ outputs)
|
877
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
878
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
879
|
+
# Clusterer returns int64 cluster labels.
|
880
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
881
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
913
882
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
914
883
|
([] if self._drop_input_cols else inputs)
|
915
884
|
+ outputs)
|
885
|
+
|
916
886
|
# For regressor, the type of predict is float64
|
917
887
|
elif self._sklearn_object._estimator_type == 'regressor':
|
918
888
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
919
889
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
920
890
|
([] if self._drop_input_cols else inputs)
|
921
891
|
+ outputs)
|
892
|
+
|
922
893
|
for prob_func in PROB_FUNCTIONS:
|
923
894
|
if hasattr(self, prob_func):
|
924
895
|
output_cols_prefix: str = f"{prob_func}_"
|