snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SVC(BaseTransformer):
57
58
  r"""C-Support Vector Classification
58
59
  For more details on this class, see [sklearn.svm.SVC]
@@ -60,6 +61,51 @@ class SVC(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  C: float, default=1.0
64
110
  Regularization parameter. The strength of the regularization is
65
111
  inversely proportional to C. Must be strictly positive. The penalty
@@ -140,35 +186,6 @@ class SVC(BaseTransformer):
140
186
  probability estimates. Ignored when `probability` is False.
141
187
  Pass an int for reproducible output across multiple function calls.
142
188
  See :term:`Glossary <random_state>`.
143
-
144
- input_cols: Optional[Union[str, List[str]]]
145
- A string or list of strings representing column names that contain features.
146
- If this parameter is not specified, all columns in the input DataFrame except
147
- the columns specified by label_cols and sample_weight_col parameters are
148
- considered input columns.
149
-
150
- label_cols: Optional[Union[str, List[str]]]
151
- A string or list of strings representing column names that contain labels.
152
- This is a required param for estimators, as there is no way to infer these
153
- columns. If this parameter is not specified, then object is fitted without
154
- labels (like a transformer).
155
-
156
- output_cols: Optional[Union[str, List[str]]]
157
- A string or list of strings representing column names that will store the
158
- output of predict and transform operations. The length of output_cols must
159
- match the expected number of output columns from the specific estimator or
160
- transformer class used.
161
- If this parameter is not specified, output column names are derived by
162
- adding an OUTPUT_ prefix to the label column names. These inferred output
163
- column names work for estimator's predict() method, but output_cols must
164
- be set explicitly for transformers.
165
-
166
- sample_weight_col: Optional[str]
167
- A string representing the column name containing the sample weights.
168
- This argument is only required when working with weighted datasets.
169
-
170
- drop_input_cols: Optional[bool], default=False
171
- If set, the response of predict(), transform() methods will not contain input columns.
172
189
  """
173
190
 
174
191
  def __init__( # type: ignore[no-untyped-def]
@@ -192,6 +209,7 @@ class SVC(BaseTransformer):
192
209
  input_cols: Optional[Union[str, Iterable[str]]] = None,
193
210
  output_cols: Optional[Union[str, Iterable[str]]] = None,
194
211
  label_cols: Optional[Union[str, Iterable[str]]] = None,
212
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
195
213
  drop_input_cols: Optional[bool] = False,
196
214
  sample_weight_col: Optional[str] = None,
197
215
  ) -> None:
@@ -200,9 +218,10 @@ class SVC(BaseTransformer):
200
218
  self.set_input_cols(input_cols)
201
219
  self.set_output_cols(output_cols)
202
220
  self.set_label_cols(label_cols)
221
+ self.set_passthrough_cols(passthrough_cols)
203
222
  self.set_drop_input_cols(drop_input_cols)
204
223
  self.set_sample_weight_col(sample_weight_col)
205
- deps = set(SklearnWrapperProvider().dependencies)
224
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
206
225
 
207
226
  self._deps = list(deps)
208
227
 
@@ -225,13 +244,14 @@ class SVC(BaseTransformer):
225
244
  args=init_args,
226
245
  klass=sklearn.svm.SVC
227
246
  )
228
- self._sklearn_object = sklearn.svm.SVC(
247
+ self._sklearn_object: Any = sklearn.svm.SVC(
229
248
  **cleaned_up_init_args,
230
249
  )
231
250
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
232
251
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
233
252
  self._snowpark_cols: Optional[List[str]] = self.input_cols
234
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
253
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
254
+ self._autogenerated = True
235
255
 
236
256
  def _get_rand_id(self) -> str:
237
257
  """
@@ -242,24 +262,6 @@ class SVC(BaseTransformer):
242
262
  """
243
263
  return str(uuid4()).replace("-", "_").upper()
244
264
 
245
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
246
- """
247
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
248
-
249
- Args:
250
- dataset: Input dataset.
251
- """
252
- if not self.input_cols:
253
- cols = [
254
- c for c in dataset.columns
255
- if c not in self.get_label_cols() and c != self.sample_weight_col
256
- ]
257
- self.set_input_cols(input_cols=cols)
258
-
259
- if not self.output_cols:
260
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
261
- self.set_output_cols(output_cols=cols)
262
-
263
265
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SVC":
264
266
  """
265
267
  Input columns setter.
@@ -305,54 +307,48 @@ class SVC(BaseTransformer):
305
307
  self
306
308
  """
307
309
  self._infer_input_output_cols(dataset)
308
- if isinstance(dataset, pd.DataFrame):
309
- assert self._sklearn_object is not None # keep mypy happy
310
- self._sklearn_object = self._handlers.fit_pandas(
311
- dataset,
312
- self._sklearn_object,
313
- self.input_cols,
314
- self.label_cols,
315
- self.sample_weight_col
316
- )
317
- elif isinstance(dataset, DataFrame):
318
- self._fit_snowpark(dataset)
319
- else:
320
- raise TypeError(
321
- f"Unexpected dataset type: {type(dataset)}."
322
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
323
- )
310
+ if isinstance(dataset, DataFrame):
311
+ session = dataset._session
312
+ assert session is not None # keep mypy happy
313
+ # Validate that key package version in user workspace are supported in snowflake conda channel
314
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
315
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
316
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
317
+
318
+ # Specify input columns so column pruning will be enforced
319
+ selected_cols = self._get_active_columns()
320
+ if len(selected_cols) > 0:
321
+ dataset = dataset.select(selected_cols)
322
+
323
+ self._snowpark_cols = dataset.select(self.input_cols).columns
324
+
325
+ # If we are already in a stored procedure, no need to kick off another one.
326
+ if SNOWML_SPROC_ENV in os.environ:
327
+ statement_params = telemetry.get_function_usage_statement_params(
328
+ project=_PROJECT,
329
+ subproject=_SUBPROJECT,
330
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVC.__class__.__name__),
331
+ api_calls=[Session.call],
332
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
333
+ )
334
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
335
+ pd_df.columns = dataset.columns
336
+ dataset = pd_df
337
+
338
+ model_trainer = ModelTrainerBuilder.build(
339
+ estimator=self._sklearn_object,
340
+ dataset=dataset,
341
+ input_cols=self.input_cols,
342
+ label_cols=self.label_cols,
343
+ sample_weight_col=self.sample_weight_col,
344
+ autogenerated=self._autogenerated,
345
+ subproject=_SUBPROJECT
346
+ )
347
+ self._sklearn_object = model_trainer.train()
324
348
  self._is_fitted = True
325
349
  self._get_model_signatures(dataset)
326
350
  return self
327
351
 
328
- def _fit_snowpark(self, dataset: DataFrame) -> None:
329
- session = dataset._session
330
- assert session is not None # keep mypy happy
331
- # Validate that key package version in user workspace are supported in snowflake conda channel
332
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
333
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
334
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
335
-
336
- # Specify input columns so column pruning will be enforced
337
- selected_cols = self._get_active_columns()
338
- if len(selected_cols) > 0:
339
- dataset = dataset.select(selected_cols)
340
-
341
- estimator = self._sklearn_object
342
- assert estimator is not None # Keep mypy happy
343
-
344
- self._snowpark_cols = dataset.select(self.input_cols).columns
345
-
346
- self._sklearn_object = self._handlers.fit_snowpark(
347
- dataset,
348
- session,
349
- estimator,
350
- ["snowflake-snowpark-python"] + self._get_dependencies(),
351
- self.input_cols,
352
- self.label_cols,
353
- self.sample_weight_col,
354
- )
355
-
356
352
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
357
353
  if self._drop_input_cols:
358
354
  return []
@@ -540,11 +536,6 @@ class SVC(BaseTransformer):
540
536
  subproject=_SUBPROJECT,
541
537
  custom_tags=dict([("autogen", True)]),
542
538
  )
543
- @telemetry.add_stmt_params_to_df(
544
- project=_PROJECT,
545
- subproject=_SUBPROJECT,
546
- custom_tags=dict([("autogen", True)]),
547
- )
548
539
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
549
540
  """Perform classification on samples in X
550
541
  For more details on this function, see [sklearn.svm.SVC.predict]
@@ -598,11 +589,6 @@ class SVC(BaseTransformer):
598
589
  subproject=_SUBPROJECT,
599
590
  custom_tags=dict([("autogen", True)]),
600
591
  )
601
- @telemetry.add_stmt_params_to_df(
602
- project=_PROJECT,
603
- subproject=_SUBPROJECT,
604
- custom_tags=dict([("autogen", True)]),
605
- )
606
592
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
607
593
  """Method not supported for this class.
608
594
 
@@ -659,7 +645,8 @@ class SVC(BaseTransformer):
659
645
  if False:
660
646
  self.fit(dataset)
661
647
  assert self._sklearn_object is not None
662
- return self._sklearn_object.labels_
648
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
649
+ return labels
663
650
  else:
664
651
  raise NotImplementedError
665
652
 
@@ -695,6 +682,7 @@ class SVC(BaseTransformer):
695
682
  output_cols = []
696
683
 
697
684
  # Make sure column names are valid snowflake identifiers.
685
+ assert output_cols is not None # Make MyPy happy
698
686
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
699
687
 
700
688
  return rv
@@ -705,11 +693,6 @@ class SVC(BaseTransformer):
705
693
  subproject=_SUBPROJECT,
706
694
  custom_tags=dict([("autogen", True)]),
707
695
  )
708
- @telemetry.add_stmt_params_to_df(
709
- project=_PROJECT,
710
- subproject=_SUBPROJECT,
711
- custom_tags=dict([("autogen", True)]),
712
- )
713
696
  def predict_proba(
714
697
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
715
698
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -752,11 +735,6 @@ class SVC(BaseTransformer):
752
735
  subproject=_SUBPROJECT,
753
736
  custom_tags=dict([("autogen", True)]),
754
737
  )
755
- @telemetry.add_stmt_params_to_df(
756
- project=_PROJECT,
757
- subproject=_SUBPROJECT,
758
- custom_tags=dict([("autogen", True)]),
759
- )
760
738
  def predict_log_proba(
761
739
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
762
740
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -795,16 +773,6 @@ class SVC(BaseTransformer):
795
773
  return output_df
796
774
 
797
775
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
798
- @telemetry.send_api_usage_telemetry(
799
- project=_PROJECT,
800
- subproject=_SUBPROJECT,
801
- custom_tags=dict([("autogen", True)]),
802
- )
803
- @telemetry.add_stmt_params_to_df(
804
- project=_PROJECT,
805
- subproject=_SUBPROJECT,
806
- custom_tags=dict([("autogen", True)]),
807
- )
808
776
  def decision_function(
809
777
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
810
778
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -907,11 +875,6 @@ class SVC(BaseTransformer):
907
875
  subproject=_SUBPROJECT,
908
876
  custom_tags=dict([("autogen", True)]),
909
877
  )
910
- @telemetry.add_stmt_params_to_df(
911
- project=_PROJECT,
912
- subproject=_SUBPROJECT,
913
- custom_tags=dict([("autogen", True)]),
914
- )
915
878
  def kneighbors(
916
879
  self,
917
880
  dataset: Union[DataFrame, pd.DataFrame],
@@ -971,18 +934,28 @@ class SVC(BaseTransformer):
971
934
  # For classifier, the type of predict is the same as the type of label
972
935
  if self._sklearn_object._estimator_type == 'classifier':
973
936
  # label columns is the desired type for output
974
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
937
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
975
938
  # rename the output columns
976
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
939
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
977
940
  self._model_signature_dict["predict"] = ModelSignature(inputs,
978
941
  ([] if self._drop_input_cols else inputs)
979
942
  + outputs)
943
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
944
+ # For outlier models, returns -1 for outliers and 1 for inliers.
945
+ # Clusterer returns int64 cluster labels.
946
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
947
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
948
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
949
+ ([] if self._drop_input_cols else inputs)
950
+ + outputs)
951
+
980
952
  # For regressor, the type of predict is float64
981
953
  elif self._sklearn_object._estimator_type == 'regressor':
982
954
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
983
955
  self._model_signature_dict["predict"] = ModelSignature(inputs,
984
956
  ([] if self._drop_input_cols else inputs)
985
957
  + outputs)
958
+
986
959
  for prob_func in PROB_FUNCTIONS:
987
960
  if hasattr(self, prob_func):
988
961
  output_cols_prefix: str = f"{prob_func}_"