snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
snowflake/ml/modeling/svm/svc.py
CHANGED
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SVC(BaseTransformer):
|
57
58
|
r"""C-Support Vector Classification
|
58
59
|
For more details on this class, see [sklearn.svm.SVC]
|
@@ -60,6 +61,51 @@ class SVC(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
C: float, default=1.0
|
64
110
|
Regularization parameter. The strength of the regularization is
|
65
111
|
inversely proportional to C. Must be strictly positive. The penalty
|
@@ -140,35 +186,6 @@ class SVC(BaseTransformer):
|
|
140
186
|
probability estimates. Ignored when `probability` is False.
|
141
187
|
Pass an int for reproducible output across multiple function calls.
|
142
188
|
See :term:`Glossary <random_state>`.
|
143
|
-
|
144
|
-
input_cols: Optional[Union[str, List[str]]]
|
145
|
-
A string or list of strings representing column names that contain features.
|
146
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
147
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
148
|
-
considered input columns.
|
149
|
-
|
150
|
-
label_cols: Optional[Union[str, List[str]]]
|
151
|
-
A string or list of strings representing column names that contain labels.
|
152
|
-
This is a required param for estimators, as there is no way to infer these
|
153
|
-
columns. If this parameter is not specified, then object is fitted without
|
154
|
-
labels (like a transformer).
|
155
|
-
|
156
|
-
output_cols: Optional[Union[str, List[str]]]
|
157
|
-
A string or list of strings representing column names that will store the
|
158
|
-
output of predict and transform operations. The length of output_cols must
|
159
|
-
match the expected number of output columns from the specific estimator or
|
160
|
-
transformer class used.
|
161
|
-
If this parameter is not specified, output column names are derived by
|
162
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
163
|
-
column names work for estimator's predict() method, but output_cols must
|
164
|
-
be set explicitly for transformers.
|
165
|
-
|
166
|
-
sample_weight_col: Optional[str]
|
167
|
-
A string representing the column name containing the sample weights.
|
168
|
-
This argument is only required when working with weighted datasets.
|
169
|
-
|
170
|
-
drop_input_cols: Optional[bool], default=False
|
171
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
172
189
|
"""
|
173
190
|
|
174
191
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -192,6 +209,7 @@ class SVC(BaseTransformer):
|
|
192
209
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
193
210
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
194
211
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
212
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
195
213
|
drop_input_cols: Optional[bool] = False,
|
196
214
|
sample_weight_col: Optional[str] = None,
|
197
215
|
) -> None:
|
@@ -200,9 +218,10 @@ class SVC(BaseTransformer):
|
|
200
218
|
self.set_input_cols(input_cols)
|
201
219
|
self.set_output_cols(output_cols)
|
202
220
|
self.set_label_cols(label_cols)
|
221
|
+
self.set_passthrough_cols(passthrough_cols)
|
203
222
|
self.set_drop_input_cols(drop_input_cols)
|
204
223
|
self.set_sample_weight_col(sample_weight_col)
|
205
|
-
deps = set(
|
224
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
206
225
|
|
207
226
|
self._deps = list(deps)
|
208
227
|
|
@@ -225,13 +244,14 @@ class SVC(BaseTransformer):
|
|
225
244
|
args=init_args,
|
226
245
|
klass=sklearn.svm.SVC
|
227
246
|
)
|
228
|
-
self._sklearn_object = sklearn.svm.SVC(
|
247
|
+
self._sklearn_object: Any = sklearn.svm.SVC(
|
229
248
|
**cleaned_up_init_args,
|
230
249
|
)
|
231
250
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
232
251
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
233
252
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
234
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
253
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
254
|
+
self._autogenerated = True
|
235
255
|
|
236
256
|
def _get_rand_id(self) -> str:
|
237
257
|
"""
|
@@ -242,24 +262,6 @@ class SVC(BaseTransformer):
|
|
242
262
|
"""
|
243
263
|
return str(uuid4()).replace("-", "_").upper()
|
244
264
|
|
245
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
246
|
-
"""
|
247
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
248
|
-
|
249
|
-
Args:
|
250
|
-
dataset: Input dataset.
|
251
|
-
"""
|
252
|
-
if not self.input_cols:
|
253
|
-
cols = [
|
254
|
-
c for c in dataset.columns
|
255
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
256
|
-
]
|
257
|
-
self.set_input_cols(input_cols=cols)
|
258
|
-
|
259
|
-
if not self.output_cols:
|
260
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
261
|
-
self.set_output_cols(output_cols=cols)
|
262
|
-
|
263
265
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SVC":
|
264
266
|
"""
|
265
267
|
Input columns setter.
|
@@ -305,54 +307,48 @@ class SVC(BaseTransformer):
|
|
305
307
|
self
|
306
308
|
"""
|
307
309
|
self._infer_input_output_cols(dataset)
|
308
|
-
if isinstance(dataset,
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
self.
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
310
|
+
if isinstance(dataset, DataFrame):
|
311
|
+
session = dataset._session
|
312
|
+
assert session is not None # keep mypy happy
|
313
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
314
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
315
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
316
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
317
|
+
|
318
|
+
# Specify input columns so column pruning will be enforced
|
319
|
+
selected_cols = self._get_active_columns()
|
320
|
+
if len(selected_cols) > 0:
|
321
|
+
dataset = dataset.select(selected_cols)
|
322
|
+
|
323
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
324
|
+
|
325
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
326
|
+
if SNOWML_SPROC_ENV in os.environ:
|
327
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
328
|
+
project=_PROJECT,
|
329
|
+
subproject=_SUBPROJECT,
|
330
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVC.__class__.__name__),
|
331
|
+
api_calls=[Session.call],
|
332
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
333
|
+
)
|
334
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
335
|
+
pd_df.columns = dataset.columns
|
336
|
+
dataset = pd_df
|
337
|
+
|
338
|
+
model_trainer = ModelTrainerBuilder.build(
|
339
|
+
estimator=self._sklearn_object,
|
340
|
+
dataset=dataset,
|
341
|
+
input_cols=self.input_cols,
|
342
|
+
label_cols=self.label_cols,
|
343
|
+
sample_weight_col=self.sample_weight_col,
|
344
|
+
autogenerated=self._autogenerated,
|
345
|
+
subproject=_SUBPROJECT
|
346
|
+
)
|
347
|
+
self._sklearn_object = model_trainer.train()
|
324
348
|
self._is_fitted = True
|
325
349
|
self._get_model_signatures(dataset)
|
326
350
|
return self
|
327
351
|
|
328
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
329
|
-
session = dataset._session
|
330
|
-
assert session is not None # keep mypy happy
|
331
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
332
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
333
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
334
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
335
|
-
|
336
|
-
# Specify input columns so column pruning will be enforced
|
337
|
-
selected_cols = self._get_active_columns()
|
338
|
-
if len(selected_cols) > 0:
|
339
|
-
dataset = dataset.select(selected_cols)
|
340
|
-
|
341
|
-
estimator = self._sklearn_object
|
342
|
-
assert estimator is not None # Keep mypy happy
|
343
|
-
|
344
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
345
|
-
|
346
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
347
|
-
dataset,
|
348
|
-
session,
|
349
|
-
estimator,
|
350
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
351
|
-
self.input_cols,
|
352
|
-
self.label_cols,
|
353
|
-
self.sample_weight_col,
|
354
|
-
)
|
355
|
-
|
356
352
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
357
353
|
if self._drop_input_cols:
|
358
354
|
return []
|
@@ -540,11 +536,6 @@ class SVC(BaseTransformer):
|
|
540
536
|
subproject=_SUBPROJECT,
|
541
537
|
custom_tags=dict([("autogen", True)]),
|
542
538
|
)
|
543
|
-
@telemetry.add_stmt_params_to_df(
|
544
|
-
project=_PROJECT,
|
545
|
-
subproject=_SUBPROJECT,
|
546
|
-
custom_tags=dict([("autogen", True)]),
|
547
|
-
)
|
548
539
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
549
540
|
"""Perform classification on samples in X
|
550
541
|
For more details on this function, see [sklearn.svm.SVC.predict]
|
@@ -598,11 +589,6 @@ class SVC(BaseTransformer):
|
|
598
589
|
subproject=_SUBPROJECT,
|
599
590
|
custom_tags=dict([("autogen", True)]),
|
600
591
|
)
|
601
|
-
@telemetry.add_stmt_params_to_df(
|
602
|
-
project=_PROJECT,
|
603
|
-
subproject=_SUBPROJECT,
|
604
|
-
custom_tags=dict([("autogen", True)]),
|
605
|
-
)
|
606
592
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
607
593
|
"""Method not supported for this class.
|
608
594
|
|
@@ -659,7 +645,8 @@ class SVC(BaseTransformer):
|
|
659
645
|
if False:
|
660
646
|
self.fit(dataset)
|
661
647
|
assert self._sklearn_object is not None
|
662
|
-
|
648
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
649
|
+
return labels
|
663
650
|
else:
|
664
651
|
raise NotImplementedError
|
665
652
|
|
@@ -695,6 +682,7 @@ class SVC(BaseTransformer):
|
|
695
682
|
output_cols = []
|
696
683
|
|
697
684
|
# Make sure column names are valid snowflake identifiers.
|
685
|
+
assert output_cols is not None # Make MyPy happy
|
698
686
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
699
687
|
|
700
688
|
return rv
|
@@ -705,11 +693,6 @@ class SVC(BaseTransformer):
|
|
705
693
|
subproject=_SUBPROJECT,
|
706
694
|
custom_tags=dict([("autogen", True)]),
|
707
695
|
)
|
708
|
-
@telemetry.add_stmt_params_to_df(
|
709
|
-
project=_PROJECT,
|
710
|
-
subproject=_SUBPROJECT,
|
711
|
-
custom_tags=dict([("autogen", True)]),
|
712
|
-
)
|
713
696
|
def predict_proba(
|
714
697
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
715
698
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -752,11 +735,6 @@ class SVC(BaseTransformer):
|
|
752
735
|
subproject=_SUBPROJECT,
|
753
736
|
custom_tags=dict([("autogen", True)]),
|
754
737
|
)
|
755
|
-
@telemetry.add_stmt_params_to_df(
|
756
|
-
project=_PROJECT,
|
757
|
-
subproject=_SUBPROJECT,
|
758
|
-
custom_tags=dict([("autogen", True)]),
|
759
|
-
)
|
760
738
|
def predict_log_proba(
|
761
739
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
762
740
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -795,16 +773,6 @@ class SVC(BaseTransformer):
|
|
795
773
|
return output_df
|
796
774
|
|
797
775
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
798
|
-
@telemetry.send_api_usage_telemetry(
|
799
|
-
project=_PROJECT,
|
800
|
-
subproject=_SUBPROJECT,
|
801
|
-
custom_tags=dict([("autogen", True)]),
|
802
|
-
)
|
803
|
-
@telemetry.add_stmt_params_to_df(
|
804
|
-
project=_PROJECT,
|
805
|
-
subproject=_SUBPROJECT,
|
806
|
-
custom_tags=dict([("autogen", True)]),
|
807
|
-
)
|
808
776
|
def decision_function(
|
809
777
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
810
778
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -907,11 +875,6 @@ class SVC(BaseTransformer):
|
|
907
875
|
subproject=_SUBPROJECT,
|
908
876
|
custom_tags=dict([("autogen", True)]),
|
909
877
|
)
|
910
|
-
@telemetry.add_stmt_params_to_df(
|
911
|
-
project=_PROJECT,
|
912
|
-
subproject=_SUBPROJECT,
|
913
|
-
custom_tags=dict([("autogen", True)]),
|
914
|
-
)
|
915
878
|
def kneighbors(
|
916
879
|
self,
|
917
880
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -971,18 +934,28 @@ class SVC(BaseTransformer):
|
|
971
934
|
# For classifier, the type of predict is the same as the type of label
|
972
935
|
if self._sklearn_object._estimator_type == 'classifier':
|
973
936
|
# label columns is the desired type for output
|
974
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
937
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
975
938
|
# rename the output columns
|
976
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
939
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
977
940
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
978
941
|
([] if self._drop_input_cols else inputs)
|
979
942
|
+ outputs)
|
943
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
944
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
945
|
+
# Clusterer returns int64 cluster labels.
|
946
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
947
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
948
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
949
|
+
([] if self._drop_input_cols else inputs)
|
950
|
+
+ outputs)
|
951
|
+
|
980
952
|
# For regressor, the type of predict is float64
|
981
953
|
elif self._sklearn_object._estimator_type == 'regressor':
|
982
954
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
983
955
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
984
956
|
([] if self._drop_input_cols else inputs)
|
985
957
|
+ outputs)
|
958
|
+
|
986
959
|
for prob_func in PROB_FUNCTIONS:
|
987
960
|
if hasattr(self, prob_func):
|
988
961
|
output_cols_prefix: str = f"{prob_func}_"
|