snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RadiusNeighborsClassifier(BaseTransformer):
|
57
58
|
r"""Classifier implementing a vote among neighbors within a given radius
|
58
59
|
For more details on this class, see [sklearn.neighbors.RadiusNeighborsClassifier]
|
@@ -60,6 +61,51 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
radius: float, default=1.0
|
64
110
|
Range of parameter space to use by default for :meth:`radius_neighbors`
|
65
111
|
queries.
|
@@ -135,35 +181,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
135
181
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
136
182
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
137
183
|
for more details.
|
138
|
-
|
139
|
-
input_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or list of strings representing column names that contain features.
|
141
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
142
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
143
|
-
considered input columns.
|
144
|
-
|
145
|
-
label_cols: Optional[Union[str, List[str]]]
|
146
|
-
A string or list of strings representing column names that contain labels.
|
147
|
-
This is a required param for estimators, as there is no way to infer these
|
148
|
-
columns. If this parameter is not specified, then object is fitted without
|
149
|
-
labels (like a transformer).
|
150
|
-
|
151
|
-
output_cols: Optional[Union[str, List[str]]]
|
152
|
-
A string or list of strings representing column names that will store the
|
153
|
-
output of predict and transform operations. The length of output_cols must
|
154
|
-
match the expected number of output columns from the specific estimator or
|
155
|
-
transformer class used.
|
156
|
-
If this parameter is not specified, output column names are derived by
|
157
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
158
|
-
column names work for estimator's predict() method, but output_cols must
|
159
|
-
be set explicitly for transformers.
|
160
|
-
|
161
|
-
sample_weight_col: Optional[str]
|
162
|
-
A string representing the column name containing the sample weights.
|
163
|
-
This argument is only required when working with weighted datasets.
|
164
|
-
|
165
|
-
drop_input_cols: Optional[bool], default=False
|
166
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
167
184
|
"""
|
168
185
|
|
169
186
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -181,6 +198,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
181
198
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
182
199
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
183
200
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
201
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
184
202
|
drop_input_cols: Optional[bool] = False,
|
185
203
|
sample_weight_col: Optional[str] = None,
|
186
204
|
) -> None:
|
@@ -189,9 +207,10 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
189
207
|
self.set_input_cols(input_cols)
|
190
208
|
self.set_output_cols(output_cols)
|
191
209
|
self.set_label_cols(label_cols)
|
210
|
+
self.set_passthrough_cols(passthrough_cols)
|
192
211
|
self.set_drop_input_cols(drop_input_cols)
|
193
212
|
self.set_sample_weight_col(sample_weight_col)
|
194
|
-
deps = set(
|
213
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
195
214
|
|
196
215
|
self._deps = list(deps)
|
197
216
|
|
@@ -208,13 +227,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
208
227
|
args=init_args,
|
209
228
|
klass=sklearn.neighbors.RadiusNeighborsClassifier
|
210
229
|
)
|
211
|
-
self._sklearn_object = sklearn.neighbors.RadiusNeighborsClassifier(
|
230
|
+
self._sklearn_object: Any = sklearn.neighbors.RadiusNeighborsClassifier(
|
212
231
|
**cleaned_up_init_args,
|
213
232
|
)
|
214
233
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
215
234
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
216
235
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
217
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
236
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RadiusNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
237
|
+
self._autogenerated = True
|
218
238
|
|
219
239
|
def _get_rand_id(self) -> str:
|
220
240
|
"""
|
@@ -225,24 +245,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
225
245
|
"""
|
226
246
|
return str(uuid4()).replace("-", "_").upper()
|
227
247
|
|
228
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
229
|
-
"""
|
230
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
231
|
-
|
232
|
-
Args:
|
233
|
-
dataset: Input dataset.
|
234
|
-
"""
|
235
|
-
if not self.input_cols:
|
236
|
-
cols = [
|
237
|
-
c for c in dataset.columns
|
238
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
239
|
-
]
|
240
|
-
self.set_input_cols(input_cols=cols)
|
241
|
-
|
242
|
-
if not self.output_cols:
|
243
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
244
|
-
self.set_output_cols(output_cols=cols)
|
245
|
-
|
246
248
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "RadiusNeighborsClassifier":
|
247
249
|
"""
|
248
250
|
Input columns setter.
|
@@ -288,54 +290,48 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
288
290
|
self
|
289
291
|
"""
|
290
292
|
self._infer_input_output_cols(dataset)
|
291
|
-
if isinstance(dataset,
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
self.
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
293
|
+
if isinstance(dataset, DataFrame):
|
294
|
+
session = dataset._session
|
295
|
+
assert session is not None # keep mypy happy
|
296
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
297
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
298
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
299
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
300
|
+
|
301
|
+
# Specify input columns so column pruning will be enforced
|
302
|
+
selected_cols = self._get_active_columns()
|
303
|
+
if len(selected_cols) > 0:
|
304
|
+
dataset = dataset.select(selected_cols)
|
305
|
+
|
306
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
307
|
+
|
308
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
309
|
+
if SNOWML_SPROC_ENV in os.environ:
|
310
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
311
|
+
project=_PROJECT,
|
312
|
+
subproject=_SUBPROJECT,
|
313
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RadiusNeighborsClassifier.__class__.__name__),
|
314
|
+
api_calls=[Session.call],
|
315
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
316
|
+
)
|
317
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
318
|
+
pd_df.columns = dataset.columns
|
319
|
+
dataset = pd_df
|
320
|
+
|
321
|
+
model_trainer = ModelTrainerBuilder.build(
|
322
|
+
estimator=self._sklearn_object,
|
323
|
+
dataset=dataset,
|
324
|
+
input_cols=self.input_cols,
|
325
|
+
label_cols=self.label_cols,
|
326
|
+
sample_weight_col=self.sample_weight_col,
|
327
|
+
autogenerated=self._autogenerated,
|
328
|
+
subproject=_SUBPROJECT
|
329
|
+
)
|
330
|
+
self._sklearn_object = model_trainer.train()
|
307
331
|
self._is_fitted = True
|
308
332
|
self._get_model_signatures(dataset)
|
309
333
|
return self
|
310
334
|
|
311
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
312
|
-
session = dataset._session
|
313
|
-
assert session is not None # keep mypy happy
|
314
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
315
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
316
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
317
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
318
|
-
|
319
|
-
# Specify input columns so column pruning will be enforced
|
320
|
-
selected_cols = self._get_active_columns()
|
321
|
-
if len(selected_cols) > 0:
|
322
|
-
dataset = dataset.select(selected_cols)
|
323
|
-
|
324
|
-
estimator = self._sklearn_object
|
325
|
-
assert estimator is not None # Keep mypy happy
|
326
|
-
|
327
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
328
|
-
|
329
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
330
|
-
dataset,
|
331
|
-
session,
|
332
|
-
estimator,
|
333
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
334
|
-
self.input_cols,
|
335
|
-
self.label_cols,
|
336
|
-
self.sample_weight_col,
|
337
|
-
)
|
338
|
-
|
339
335
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
340
336
|
if self._drop_input_cols:
|
341
337
|
return []
|
@@ -523,11 +519,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
523
519
|
subproject=_SUBPROJECT,
|
524
520
|
custom_tags=dict([("autogen", True)]),
|
525
521
|
)
|
526
|
-
@telemetry.add_stmt_params_to_df(
|
527
|
-
project=_PROJECT,
|
528
|
-
subproject=_SUBPROJECT,
|
529
|
-
custom_tags=dict([("autogen", True)]),
|
530
|
-
)
|
531
522
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
532
523
|
"""Predict the class labels for the provided data
|
533
524
|
For more details on this function, see [sklearn.neighbors.RadiusNeighborsClassifier.predict]
|
@@ -581,11 +572,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
581
572
|
subproject=_SUBPROJECT,
|
582
573
|
custom_tags=dict([("autogen", True)]),
|
583
574
|
)
|
584
|
-
@telemetry.add_stmt_params_to_df(
|
585
|
-
project=_PROJECT,
|
586
|
-
subproject=_SUBPROJECT,
|
587
|
-
custom_tags=dict([("autogen", True)]),
|
588
|
-
)
|
589
575
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
590
576
|
"""Method not supported for this class.
|
591
577
|
|
@@ -642,7 +628,8 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
642
628
|
if False:
|
643
629
|
self.fit(dataset)
|
644
630
|
assert self._sklearn_object is not None
|
645
|
-
|
631
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
632
|
+
return labels
|
646
633
|
else:
|
647
634
|
raise NotImplementedError
|
648
635
|
|
@@ -678,6 +665,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
678
665
|
output_cols = []
|
679
666
|
|
680
667
|
# Make sure column names are valid snowflake identifiers.
|
668
|
+
assert output_cols is not None # Make MyPy happy
|
681
669
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
682
670
|
|
683
671
|
return rv
|
@@ -688,11 +676,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
688
676
|
subproject=_SUBPROJECT,
|
689
677
|
custom_tags=dict([("autogen", True)]),
|
690
678
|
)
|
691
|
-
@telemetry.add_stmt_params_to_df(
|
692
|
-
project=_PROJECT,
|
693
|
-
subproject=_SUBPROJECT,
|
694
|
-
custom_tags=dict([("autogen", True)]),
|
695
|
-
)
|
696
679
|
def predict_proba(
|
697
680
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
698
681
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -735,11 +718,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
735
718
|
subproject=_SUBPROJECT,
|
736
719
|
custom_tags=dict([("autogen", True)]),
|
737
720
|
)
|
738
|
-
@telemetry.add_stmt_params_to_df(
|
739
|
-
project=_PROJECT,
|
740
|
-
subproject=_SUBPROJECT,
|
741
|
-
custom_tags=dict([("autogen", True)]),
|
742
|
-
)
|
743
721
|
def predict_log_proba(
|
744
722
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
745
723
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -778,16 +756,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
778
756
|
return output_df
|
779
757
|
|
780
758
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
781
|
-
@telemetry.send_api_usage_telemetry(
|
782
|
-
project=_PROJECT,
|
783
|
-
subproject=_SUBPROJECT,
|
784
|
-
custom_tags=dict([("autogen", True)]),
|
785
|
-
)
|
786
|
-
@telemetry.add_stmt_params_to_df(
|
787
|
-
project=_PROJECT,
|
788
|
-
subproject=_SUBPROJECT,
|
789
|
-
custom_tags=dict([("autogen", True)]),
|
790
|
-
)
|
791
759
|
def decision_function(
|
792
760
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
793
761
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -888,11 +856,6 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
888
856
|
subproject=_SUBPROJECT,
|
889
857
|
custom_tags=dict([("autogen", True)]),
|
890
858
|
)
|
891
|
-
@telemetry.add_stmt_params_to_df(
|
892
|
-
project=_PROJECT,
|
893
|
-
subproject=_SUBPROJECT,
|
894
|
-
custom_tags=dict([("autogen", True)]),
|
895
|
-
)
|
896
859
|
def kneighbors(
|
897
860
|
self,
|
898
861
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -952,18 +915,28 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
952
915
|
# For classifier, the type of predict is the same as the type of label
|
953
916
|
if self._sklearn_object._estimator_type == 'classifier':
|
954
917
|
# label columns is the desired type for output
|
955
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
918
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
956
919
|
# rename the output columns
|
957
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
920
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
958
921
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
959
922
|
([] if self._drop_input_cols else inputs)
|
960
923
|
+ outputs)
|
924
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
925
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
926
|
+
# Clusterer returns int64 cluster labels.
|
927
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
928
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
929
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
930
|
+
([] if self._drop_input_cols else inputs)
|
931
|
+
+ outputs)
|
932
|
+
|
961
933
|
# For regressor, the type of predict is float64
|
962
934
|
elif self._sklearn_object._estimator_type == 'regressor':
|
963
935
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
964
936
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
965
937
|
([] if self._drop_input_cols else inputs)
|
966
938
|
+ outputs)
|
939
|
+
|
967
940
|
for prob_func in PROB_FUNCTIONS:
|
968
941
|
if hasattr(self, prob_func):
|
969
942
|
output_cols_prefix: str = f"{prob_func}_"
|