snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SpectralClustering(BaseTransformer):
57
58
  r"""Apply clustering to a projection of the normalized Laplacian
58
59
  For more details on this class, see [sklearn.cluster.SpectralClustering]
@@ -60,6 +61,49 @@ class SpectralClustering(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_clusters: int, default=8
64
108
  The dimension of the projection subspace.
65
109
 
@@ -159,35 +203,6 @@ class SpectralClustering(BaseTransformer):
159
203
 
160
204
  verbose: bool, default=False
161
205
  Verbosity mode.
162
-
163
- input_cols: Optional[Union[str, List[str]]]
164
- A string or list of strings representing column names that contain features.
165
- If this parameter is not specified, all columns in the input DataFrame except
166
- the columns specified by label_cols and sample_weight_col parameters are
167
- considered input columns.
168
-
169
- label_cols: Optional[Union[str, List[str]]]
170
- A string or list of strings representing column names that contain labels.
171
- This is a required param for estimators, as there is no way to infer these
172
- columns. If this parameter is not specified, then object is fitted without
173
- labels (like a transformer).
174
-
175
- output_cols: Optional[Union[str, List[str]]]
176
- A string or list of strings representing column names that will store the
177
- output of predict and transform operations. The length of output_cols must
178
- match the expected number of output columns from the specific estimator or
179
- transformer class used.
180
- If this parameter is not specified, output column names are derived by
181
- adding an OUTPUT_ prefix to the label column names. These inferred output
182
- column names work for estimator's predict() method, but output_cols must
183
- be set explicitly for transformers.
184
-
185
- sample_weight_col: Optional[str]
186
- A string representing the column name containing the sample weights.
187
- This argument is only required when working with weighted datasets.
188
-
189
- drop_input_cols: Optional[bool], default=False
190
- If set, the response of predict(), transform() methods will not contain input columns.
191
206
  """
192
207
 
193
208
  def __init__( # type: ignore[no-untyped-def]
@@ -211,6 +226,7 @@ class SpectralClustering(BaseTransformer):
211
226
  input_cols: Optional[Union[str, Iterable[str]]] = None,
212
227
  output_cols: Optional[Union[str, Iterable[str]]] = None,
213
228
  label_cols: Optional[Union[str, Iterable[str]]] = None,
229
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
214
230
  drop_input_cols: Optional[bool] = False,
215
231
  sample_weight_col: Optional[str] = None,
216
232
  ) -> None:
@@ -219,9 +235,10 @@ class SpectralClustering(BaseTransformer):
219
235
  self.set_input_cols(input_cols)
220
236
  self.set_output_cols(output_cols)
221
237
  self.set_label_cols(label_cols)
238
+ self.set_passthrough_cols(passthrough_cols)
222
239
  self.set_drop_input_cols(drop_input_cols)
223
240
  self.set_sample_weight_col(sample_weight_col)
224
- deps = set(SklearnWrapperProvider().dependencies)
241
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
225
242
 
226
243
  self._deps = list(deps)
227
244
 
@@ -244,13 +261,14 @@ class SpectralClustering(BaseTransformer):
244
261
  args=init_args,
245
262
  klass=sklearn.cluster.SpectralClustering
246
263
  )
247
- self._sklearn_object = sklearn.cluster.SpectralClustering(
264
+ self._sklearn_object: Any = sklearn.cluster.SpectralClustering(
248
265
  **cleaned_up_init_args,
249
266
  )
250
267
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
251
268
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
252
269
  self._snowpark_cols: Optional[List[str]] = self.input_cols
253
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
270
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralClustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
271
+ self._autogenerated = True
254
272
 
255
273
  def _get_rand_id(self) -> str:
256
274
  """
@@ -261,24 +279,6 @@ class SpectralClustering(BaseTransformer):
261
279
  """
262
280
  return str(uuid4()).replace("-", "_").upper()
263
281
 
264
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
265
- """
266
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
267
-
268
- Args:
269
- dataset: Input dataset.
270
- """
271
- if not self.input_cols:
272
- cols = [
273
- c for c in dataset.columns
274
- if c not in self.get_label_cols() and c != self.sample_weight_col
275
- ]
276
- self.set_input_cols(input_cols=cols)
277
-
278
- if not self.output_cols:
279
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
280
- self.set_output_cols(output_cols=cols)
281
-
282
282
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SpectralClustering":
283
283
  """
284
284
  Input columns setter.
@@ -324,54 +324,48 @@ class SpectralClustering(BaseTransformer):
324
324
  self
325
325
  """
326
326
  self._infer_input_output_cols(dataset)
327
- if isinstance(dataset, pd.DataFrame):
328
- assert self._sklearn_object is not None # keep mypy happy
329
- self._sklearn_object = self._handlers.fit_pandas(
330
- dataset,
331
- self._sklearn_object,
332
- self.input_cols,
333
- self.label_cols,
334
- self.sample_weight_col
335
- )
336
- elif isinstance(dataset, DataFrame):
337
- self._fit_snowpark(dataset)
338
- else:
339
- raise TypeError(
340
- f"Unexpected dataset type: {type(dataset)}."
341
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
342
- )
327
+ if isinstance(dataset, DataFrame):
328
+ session = dataset._session
329
+ assert session is not None # keep mypy happy
330
+ # Validate that key package version in user workspace are supported in snowflake conda channel
331
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
332
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
333
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
334
+
335
+ # Specify input columns so column pruning will be enforced
336
+ selected_cols = self._get_active_columns()
337
+ if len(selected_cols) > 0:
338
+ dataset = dataset.select(selected_cols)
339
+
340
+ self._snowpark_cols = dataset.select(self.input_cols).columns
341
+
342
+ # If we are already in a stored procedure, no need to kick off another one.
343
+ if SNOWML_SPROC_ENV in os.environ:
344
+ statement_params = telemetry.get_function_usage_statement_params(
345
+ project=_PROJECT,
346
+ subproject=_SUBPROJECT,
347
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralClustering.__class__.__name__),
348
+ api_calls=[Session.call],
349
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
350
+ )
351
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
352
+ pd_df.columns = dataset.columns
353
+ dataset = pd_df
354
+
355
+ model_trainer = ModelTrainerBuilder.build(
356
+ estimator=self._sklearn_object,
357
+ dataset=dataset,
358
+ input_cols=self.input_cols,
359
+ label_cols=self.label_cols,
360
+ sample_weight_col=self.sample_weight_col,
361
+ autogenerated=self._autogenerated,
362
+ subproject=_SUBPROJECT
363
+ )
364
+ self._sklearn_object = model_trainer.train()
343
365
  self._is_fitted = True
344
366
  self._get_model_signatures(dataset)
345
367
  return self
346
368
 
347
- def _fit_snowpark(self, dataset: DataFrame) -> None:
348
- session = dataset._session
349
- assert session is not None # keep mypy happy
350
- # Validate that key package version in user workspace are supported in snowflake conda channel
351
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
352
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
353
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
354
-
355
- # Specify input columns so column pruning will be enforced
356
- selected_cols = self._get_active_columns()
357
- if len(selected_cols) > 0:
358
- dataset = dataset.select(selected_cols)
359
-
360
- estimator = self._sklearn_object
361
- assert estimator is not None # Keep mypy happy
362
-
363
- self._snowpark_cols = dataset.select(self.input_cols).columns
364
-
365
- self._sklearn_object = self._handlers.fit_snowpark(
366
- dataset,
367
- session,
368
- estimator,
369
- ["snowflake-snowpark-python"] + self._get_dependencies(),
370
- self.input_cols,
371
- self.label_cols,
372
- self.sample_weight_col,
373
- )
374
-
375
369
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
376
370
  if self._drop_input_cols:
377
371
  return []
@@ -559,11 +553,6 @@ class SpectralClustering(BaseTransformer):
559
553
  subproject=_SUBPROJECT,
560
554
  custom_tags=dict([("autogen", True)]),
561
555
  )
562
- @telemetry.add_stmt_params_to_df(
563
- project=_PROJECT,
564
- subproject=_SUBPROJECT,
565
- custom_tags=dict([("autogen", True)]),
566
- )
567
556
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
568
557
  """Method not supported for this class.
569
558
 
@@ -615,11 +604,6 @@ class SpectralClustering(BaseTransformer):
615
604
  subproject=_SUBPROJECT,
616
605
  custom_tags=dict([("autogen", True)]),
617
606
  )
618
- @telemetry.add_stmt_params_to_df(
619
- project=_PROJECT,
620
- subproject=_SUBPROJECT,
621
- custom_tags=dict([("autogen", True)]),
622
- )
623
607
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
624
608
  """Method not supported for this class.
625
609
 
@@ -678,7 +662,8 @@ class SpectralClustering(BaseTransformer):
678
662
  if True:
679
663
  self.fit(dataset)
680
664
  assert self._sklearn_object is not None
681
- return self._sklearn_object.labels_
665
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
666
+ return labels
682
667
  else:
683
668
  raise NotImplementedError
684
669
 
@@ -714,6 +699,7 @@ class SpectralClustering(BaseTransformer):
714
699
  output_cols = []
715
700
 
716
701
  # Make sure column names are valid snowflake identifiers.
702
+ assert output_cols is not None # Make MyPy happy
717
703
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
718
704
 
719
705
  return rv
@@ -724,11 +710,6 @@ class SpectralClustering(BaseTransformer):
724
710
  subproject=_SUBPROJECT,
725
711
  custom_tags=dict([("autogen", True)]),
726
712
  )
727
- @telemetry.add_stmt_params_to_df(
728
- project=_PROJECT,
729
- subproject=_SUBPROJECT,
730
- custom_tags=dict([("autogen", True)]),
731
- )
732
713
  def predict_proba(
733
714
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
734
715
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -769,11 +750,6 @@ class SpectralClustering(BaseTransformer):
769
750
  subproject=_SUBPROJECT,
770
751
  custom_tags=dict([("autogen", True)]),
771
752
  )
772
- @telemetry.add_stmt_params_to_df(
773
- project=_PROJECT,
774
- subproject=_SUBPROJECT,
775
- custom_tags=dict([("autogen", True)]),
776
- )
777
753
  def predict_log_proba(
778
754
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
779
755
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -810,16 +786,6 @@ class SpectralClustering(BaseTransformer):
810
786
  return output_df
811
787
 
812
788
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
813
- @telemetry.send_api_usage_telemetry(
814
- project=_PROJECT,
815
- subproject=_SUBPROJECT,
816
- custom_tags=dict([("autogen", True)]),
817
- )
818
- @telemetry.add_stmt_params_to_df(
819
- project=_PROJECT,
820
- subproject=_SUBPROJECT,
821
- custom_tags=dict([("autogen", True)]),
822
- )
823
789
  def decision_function(
824
790
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
825
791
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -918,11 +884,6 @@ class SpectralClustering(BaseTransformer):
918
884
  subproject=_SUBPROJECT,
919
885
  custom_tags=dict([("autogen", True)]),
920
886
  )
921
- @telemetry.add_stmt_params_to_df(
922
- project=_PROJECT,
923
- subproject=_SUBPROJECT,
924
- custom_tags=dict([("autogen", True)]),
925
- )
926
887
  def kneighbors(
927
888
  self,
928
889
  dataset: Union[DataFrame, pd.DataFrame],
@@ -982,18 +943,28 @@ class SpectralClustering(BaseTransformer):
982
943
  # For classifier, the type of predict is the same as the type of label
983
944
  if self._sklearn_object._estimator_type == 'classifier':
984
945
  # label columns is the desired type for output
985
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
946
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
986
947
  # rename the output columns
987
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
948
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
949
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
950
+ ([] if self._drop_input_cols else inputs)
951
+ + outputs)
952
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
953
+ # For outlier models, returns -1 for outliers and 1 for inliers.
954
+ # Clusterer returns int64 cluster labels.
955
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
956
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
988
957
  self._model_signature_dict["predict"] = ModelSignature(inputs,
989
958
  ([] if self._drop_input_cols else inputs)
990
959
  + outputs)
960
+
991
961
  # For regressor, the type of predict is float64
992
962
  elif self._sklearn_object._estimator_type == 'regressor':
993
963
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
994
964
  self._model_signature_dict["predict"] = ModelSignature(inputs,
995
965
  ([] if self._drop_input_cols else inputs)
996
966
  + outputs)
967
+
997
968
  for prob_func in PROB_FUNCTIONS:
998
969
  if hasattr(self, prob_func):
999
970
  output_cols_prefix: str = f"{prob_func}_"