snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class NearestNeighbors(BaseTransformer):
|
57
58
|
r"""Unsupervised learner for implementing neighbor searches
|
58
59
|
For more details on this class, see [sklearn.neighbors.NearestNeighbors]
|
@@ -60,6 +61,49 @@ class NearestNeighbors(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_neighbors: int, default=5
|
64
108
|
Number of neighbors to use by default for :meth:`kneighbors` queries.
|
65
109
|
|
@@ -117,35 +161,6 @@ class NearestNeighbors(BaseTransformer):
|
|
117
161
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
118
162
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
119
163
|
for more details.
|
120
|
-
|
121
|
-
input_cols: Optional[Union[str, List[str]]]
|
122
|
-
A string or list of strings representing column names that contain features.
|
123
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
124
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
125
|
-
considered input columns.
|
126
|
-
|
127
|
-
label_cols: Optional[Union[str, List[str]]]
|
128
|
-
A string or list of strings representing column names that contain labels.
|
129
|
-
This is a required param for estimators, as there is no way to infer these
|
130
|
-
columns. If this parameter is not specified, then object is fitted without
|
131
|
-
labels (like a transformer).
|
132
|
-
|
133
|
-
output_cols: Optional[Union[str, List[str]]]
|
134
|
-
A string or list of strings representing column names that will store the
|
135
|
-
output of predict and transform operations. The length of output_cols must
|
136
|
-
match the expected number of output columns from the specific estimator or
|
137
|
-
transformer class used.
|
138
|
-
If this parameter is not specified, output column names are derived by
|
139
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
140
|
-
column names work for estimator's predict() method, but output_cols must
|
141
|
-
be set explicitly for transformers.
|
142
|
-
|
143
|
-
sample_weight_col: Optional[str]
|
144
|
-
A string representing the column name containing the sample weights.
|
145
|
-
This argument is only required when working with weighted datasets.
|
146
|
-
|
147
|
-
drop_input_cols: Optional[bool], default=False
|
148
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
149
164
|
"""
|
150
165
|
|
151
166
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -162,6 +177,7 @@ class NearestNeighbors(BaseTransformer):
|
|
162
177
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
163
178
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
164
179
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
180
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
165
181
|
drop_input_cols: Optional[bool] = False,
|
166
182
|
sample_weight_col: Optional[str] = None,
|
167
183
|
) -> None:
|
@@ -170,9 +186,10 @@ class NearestNeighbors(BaseTransformer):
|
|
170
186
|
self.set_input_cols(input_cols)
|
171
187
|
self.set_output_cols(output_cols)
|
172
188
|
self.set_label_cols(label_cols)
|
189
|
+
self.set_passthrough_cols(passthrough_cols)
|
173
190
|
self.set_drop_input_cols(drop_input_cols)
|
174
191
|
self.set_sample_weight_col(sample_weight_col)
|
175
|
-
deps = set(
|
192
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
176
193
|
|
177
194
|
self._deps = list(deps)
|
178
195
|
|
@@ -188,13 +205,14 @@ class NearestNeighbors(BaseTransformer):
|
|
188
205
|
args=init_args,
|
189
206
|
klass=sklearn.neighbors.NearestNeighbors
|
190
207
|
)
|
191
|
-
self._sklearn_object = sklearn.neighbors.NearestNeighbors(
|
208
|
+
self._sklearn_object: Any = sklearn.neighbors.NearestNeighbors(
|
192
209
|
**cleaned_up_init_args,
|
193
210
|
)
|
194
211
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
195
212
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
196
213
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
197
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestNeighbors.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
214
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=NearestNeighbors.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
215
|
+
self._autogenerated = True
|
198
216
|
|
199
217
|
def _get_rand_id(self) -> str:
|
200
218
|
"""
|
@@ -205,24 +223,6 @@ class NearestNeighbors(BaseTransformer):
|
|
205
223
|
"""
|
206
224
|
return str(uuid4()).replace("-", "_").upper()
|
207
225
|
|
208
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
209
|
-
"""
|
210
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
211
|
-
|
212
|
-
Args:
|
213
|
-
dataset: Input dataset.
|
214
|
-
"""
|
215
|
-
if not self.input_cols:
|
216
|
-
cols = [
|
217
|
-
c for c in dataset.columns
|
218
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
219
|
-
]
|
220
|
-
self.set_input_cols(input_cols=cols)
|
221
|
-
|
222
|
-
if not self.output_cols:
|
223
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
224
|
-
self.set_output_cols(output_cols=cols)
|
225
|
-
|
226
226
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "NearestNeighbors":
|
227
227
|
"""
|
228
228
|
Input columns setter.
|
@@ -268,54 +268,48 @@ class NearestNeighbors(BaseTransformer):
|
|
268
268
|
self
|
269
269
|
"""
|
270
270
|
self._infer_input_output_cols(dataset)
|
271
|
-
if isinstance(dataset,
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
self.
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
271
|
+
if isinstance(dataset, DataFrame):
|
272
|
+
session = dataset._session
|
273
|
+
assert session is not None # keep mypy happy
|
274
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
275
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
276
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
277
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
278
|
+
|
279
|
+
# Specify input columns so column pruning will be enforced
|
280
|
+
selected_cols = self._get_active_columns()
|
281
|
+
if len(selected_cols) > 0:
|
282
|
+
dataset = dataset.select(selected_cols)
|
283
|
+
|
284
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
285
|
+
|
286
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
287
|
+
if SNOWML_SPROC_ENV in os.environ:
|
288
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
289
|
+
project=_PROJECT,
|
290
|
+
subproject=_SUBPROJECT,
|
291
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NearestNeighbors.__class__.__name__),
|
292
|
+
api_calls=[Session.call],
|
293
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
294
|
+
)
|
295
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
296
|
+
pd_df.columns = dataset.columns
|
297
|
+
dataset = pd_df
|
298
|
+
|
299
|
+
model_trainer = ModelTrainerBuilder.build(
|
300
|
+
estimator=self._sklearn_object,
|
301
|
+
dataset=dataset,
|
302
|
+
input_cols=self.input_cols,
|
303
|
+
label_cols=self.label_cols,
|
304
|
+
sample_weight_col=self.sample_weight_col,
|
305
|
+
autogenerated=self._autogenerated,
|
306
|
+
subproject=_SUBPROJECT
|
307
|
+
)
|
308
|
+
self._sklearn_object = model_trainer.train()
|
287
309
|
self._is_fitted = True
|
288
310
|
self._get_model_signatures(dataset)
|
289
311
|
return self
|
290
312
|
|
291
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
292
|
-
session = dataset._session
|
293
|
-
assert session is not None # keep mypy happy
|
294
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
295
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
296
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
297
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
298
|
-
|
299
|
-
# Specify input columns so column pruning will be enforced
|
300
|
-
selected_cols = self._get_active_columns()
|
301
|
-
if len(selected_cols) > 0:
|
302
|
-
dataset = dataset.select(selected_cols)
|
303
|
-
|
304
|
-
estimator = self._sklearn_object
|
305
|
-
assert estimator is not None # Keep mypy happy
|
306
|
-
|
307
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
308
|
-
|
309
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
310
|
-
dataset,
|
311
|
-
session,
|
312
|
-
estimator,
|
313
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
314
|
-
self.input_cols,
|
315
|
-
self.label_cols,
|
316
|
-
self.sample_weight_col,
|
317
|
-
)
|
318
|
-
|
319
313
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
320
314
|
if self._drop_input_cols:
|
321
315
|
return []
|
@@ -503,11 +497,6 @@ class NearestNeighbors(BaseTransformer):
|
|
503
497
|
subproject=_SUBPROJECT,
|
504
498
|
custom_tags=dict([("autogen", True)]),
|
505
499
|
)
|
506
|
-
@telemetry.add_stmt_params_to_df(
|
507
|
-
project=_PROJECT,
|
508
|
-
subproject=_SUBPROJECT,
|
509
|
-
custom_tags=dict([("autogen", True)]),
|
510
|
-
)
|
511
500
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
512
501
|
"""Method not supported for this class.
|
513
502
|
|
@@ -559,11 +548,6 @@ class NearestNeighbors(BaseTransformer):
|
|
559
548
|
subproject=_SUBPROJECT,
|
560
549
|
custom_tags=dict([("autogen", True)]),
|
561
550
|
)
|
562
|
-
@telemetry.add_stmt_params_to_df(
|
563
|
-
project=_PROJECT,
|
564
|
-
subproject=_SUBPROJECT,
|
565
|
-
custom_tags=dict([("autogen", True)]),
|
566
|
-
)
|
567
551
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
568
552
|
"""Method not supported for this class.
|
569
553
|
|
@@ -620,7 +604,8 @@ class NearestNeighbors(BaseTransformer):
|
|
620
604
|
if False:
|
621
605
|
self.fit(dataset)
|
622
606
|
assert self._sklearn_object is not None
|
623
|
-
|
607
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
608
|
+
return labels
|
624
609
|
else:
|
625
610
|
raise NotImplementedError
|
626
611
|
|
@@ -656,6 +641,7 @@ class NearestNeighbors(BaseTransformer):
|
|
656
641
|
output_cols = []
|
657
642
|
|
658
643
|
# Make sure column names are valid snowflake identifiers.
|
644
|
+
assert output_cols is not None # Make MyPy happy
|
659
645
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
660
646
|
|
661
647
|
return rv
|
@@ -666,11 +652,6 @@ class NearestNeighbors(BaseTransformer):
|
|
666
652
|
subproject=_SUBPROJECT,
|
667
653
|
custom_tags=dict([("autogen", True)]),
|
668
654
|
)
|
669
|
-
@telemetry.add_stmt_params_to_df(
|
670
|
-
project=_PROJECT,
|
671
|
-
subproject=_SUBPROJECT,
|
672
|
-
custom_tags=dict([("autogen", True)]),
|
673
|
-
)
|
674
655
|
def predict_proba(
|
675
656
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
676
657
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -711,11 +692,6 @@ class NearestNeighbors(BaseTransformer):
|
|
711
692
|
subproject=_SUBPROJECT,
|
712
693
|
custom_tags=dict([("autogen", True)]),
|
713
694
|
)
|
714
|
-
@telemetry.add_stmt_params_to_df(
|
715
|
-
project=_PROJECT,
|
716
|
-
subproject=_SUBPROJECT,
|
717
|
-
custom_tags=dict([("autogen", True)]),
|
718
|
-
)
|
719
695
|
def predict_log_proba(
|
720
696
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
721
697
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -752,16 +728,6 @@ class NearestNeighbors(BaseTransformer):
|
|
752
728
|
return output_df
|
753
729
|
|
754
730
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
755
|
-
@telemetry.send_api_usage_telemetry(
|
756
|
-
project=_PROJECT,
|
757
|
-
subproject=_SUBPROJECT,
|
758
|
-
custom_tags=dict([("autogen", True)]),
|
759
|
-
)
|
760
|
-
@telemetry.add_stmt_params_to_df(
|
761
|
-
project=_PROJECT,
|
762
|
-
subproject=_SUBPROJECT,
|
763
|
-
custom_tags=dict([("autogen", True)]),
|
764
|
-
)
|
765
731
|
def decision_function(
|
766
732
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
767
733
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -860,11 +826,6 @@ class NearestNeighbors(BaseTransformer):
|
|
860
826
|
subproject=_SUBPROJECT,
|
861
827
|
custom_tags=dict([("autogen", True)]),
|
862
828
|
)
|
863
|
-
@telemetry.add_stmt_params_to_df(
|
864
|
-
project=_PROJECT,
|
865
|
-
subproject=_SUBPROJECT,
|
866
|
-
custom_tags=dict([("autogen", True)]),
|
867
|
-
)
|
868
829
|
def kneighbors(
|
869
830
|
self,
|
870
831
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -926,18 +887,28 @@ class NearestNeighbors(BaseTransformer):
|
|
926
887
|
# For classifier, the type of predict is the same as the type of label
|
927
888
|
if self._sklearn_object._estimator_type == 'classifier':
|
928
889
|
# label columns is the desired type for output
|
929
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
890
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
930
891
|
# rename the output columns
|
931
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
892
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
893
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
894
|
+
([] if self._drop_input_cols else inputs)
|
895
|
+
+ outputs)
|
896
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
897
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
898
|
+
# Clusterer returns int64 cluster labels.
|
899
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
900
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
932
901
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
933
902
|
([] if self._drop_input_cols else inputs)
|
934
903
|
+ outputs)
|
904
|
+
|
935
905
|
# For regressor, the type of predict is float64
|
936
906
|
elif self._sklearn_object._estimator_type == 'regressor':
|
937
907
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
938
908
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
939
909
|
([] if self._drop_input_cols else inputs)
|
940
910
|
+ outputs)
|
911
|
+
|
941
912
|
for prob_func in PROB_FUNCTIONS:
|
942
913
|
if hasattr(self, prob_func):
|
943
914
|
output_cols_prefix: str = f"{prob_func}_"
|