snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class AdaBoostRegressor(BaseTransformer):
57
58
  r"""An AdaBoost regressor
58
59
  For more details on this class, see [sklearn.ensemble.AdaBoostRegressor]
@@ -60,6 +61,51 @@ class AdaBoostRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  estimator: object, default=None
64
110
  The base estimator from which the boosted ensemble is built.
65
111
  If ``None``, then the base estimator is
@@ -95,35 +141,6 @@ class AdaBoostRegressor(BaseTransformer):
95
141
  If ``None``, then the base estimator is
96
142
  :class:`~sklearn.tree.DecisionTreeRegressor` initialized with
97
143
  `max_depth=3`.
98
-
99
- input_cols: Optional[Union[str, List[str]]]
100
- A string or list of strings representing column names that contain features.
101
- If this parameter is not specified, all columns in the input DataFrame except
102
- the columns specified by label_cols and sample_weight_col parameters are
103
- considered input columns.
104
-
105
- label_cols: Optional[Union[str, List[str]]]
106
- A string or list of strings representing column names that contain labels.
107
- This is a required param for estimators, as there is no way to infer these
108
- columns. If this parameter is not specified, then object is fitted without
109
- labels (like a transformer).
110
-
111
- output_cols: Optional[Union[str, List[str]]]
112
- A string or list of strings representing column names that will store the
113
- output of predict and transform operations. The length of output_cols must
114
- match the expected number of output columns from the specific estimator or
115
- transformer class used.
116
- If this parameter is not specified, output column names are derived by
117
- adding an OUTPUT_ prefix to the label column names. These inferred output
118
- column names work for estimator's predict() method, but output_cols must
119
- be set explicitly for transformers.
120
-
121
- sample_weight_col: Optional[str]
122
- A string representing the column name containing the sample weights.
123
- This argument is only required when working with weighted datasets.
124
-
125
- drop_input_cols: Optional[bool], default=False
126
- If set, the response of predict(), transform() methods will not contain input columns.
127
144
  """
128
145
 
129
146
  def __init__( # type: ignore[no-untyped-def]
@@ -138,6 +155,7 @@ class AdaBoostRegressor(BaseTransformer):
138
155
  input_cols: Optional[Union[str, Iterable[str]]] = None,
139
156
  output_cols: Optional[Union[str, Iterable[str]]] = None,
140
157
  label_cols: Optional[Union[str, Iterable[str]]] = None,
158
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
141
159
  drop_input_cols: Optional[bool] = False,
142
160
  sample_weight_col: Optional[str] = None,
143
161
  ) -> None:
@@ -146,9 +164,10 @@ class AdaBoostRegressor(BaseTransformer):
146
164
  self.set_input_cols(input_cols)
147
165
  self.set_output_cols(output_cols)
148
166
  self.set_label_cols(label_cols)
167
+ self.set_passthrough_cols(passthrough_cols)
149
168
  self.set_drop_input_cols(drop_input_cols)
150
169
  self.set_sample_weight_col(sample_weight_col)
151
- deps = set(SklearnWrapperProvider().dependencies)
170
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
152
171
  deps = deps | gather_dependencies(estimator)
153
172
  deps = deps | gather_dependencies(base_estimator)
154
173
  self._deps = list(deps)
@@ -164,13 +183,14 @@ class AdaBoostRegressor(BaseTransformer):
164
183
  args=init_args,
165
184
  klass=sklearn.ensemble.AdaBoostRegressor
166
185
  )
167
- self._sklearn_object = sklearn.ensemble.AdaBoostRegressor(
186
+ self._sklearn_object: Any = sklearn.ensemble.AdaBoostRegressor(
168
187
  **cleaned_up_init_args,
169
188
  )
170
189
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
171
190
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
172
191
  self._snowpark_cols: Optional[List[str]] = self.input_cols
173
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdaBoostRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
192
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdaBoostRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
193
+ self._autogenerated = True
174
194
 
175
195
  def _get_rand_id(self) -> str:
176
196
  """
@@ -181,24 +201,6 @@ class AdaBoostRegressor(BaseTransformer):
181
201
  """
182
202
  return str(uuid4()).replace("-", "_").upper()
183
203
 
184
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
185
- """
186
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
187
-
188
- Args:
189
- dataset: Input dataset.
190
- """
191
- if not self.input_cols:
192
- cols = [
193
- c for c in dataset.columns
194
- if c not in self.get_label_cols() and c != self.sample_weight_col
195
- ]
196
- self.set_input_cols(input_cols=cols)
197
-
198
- if not self.output_cols:
199
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
200
- self.set_output_cols(output_cols=cols)
201
-
202
204
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "AdaBoostRegressor":
203
205
  """
204
206
  Input columns setter.
@@ -244,54 +246,48 @@ class AdaBoostRegressor(BaseTransformer):
244
246
  self
245
247
  """
246
248
  self._infer_input_output_cols(dataset)
247
- if isinstance(dataset, pd.DataFrame):
248
- assert self._sklearn_object is not None # keep mypy happy
249
- self._sklearn_object = self._handlers.fit_pandas(
250
- dataset,
251
- self._sklearn_object,
252
- self.input_cols,
253
- self.label_cols,
254
- self.sample_weight_col
255
- )
256
- elif isinstance(dataset, DataFrame):
257
- self._fit_snowpark(dataset)
258
- else:
259
- raise TypeError(
260
- f"Unexpected dataset type: {type(dataset)}."
261
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
262
- )
249
+ if isinstance(dataset, DataFrame):
250
+ session = dataset._session
251
+ assert session is not None # keep mypy happy
252
+ # Validate that key package version in user workspace are supported in snowflake conda channel
253
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
254
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
255
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
256
+
257
+ # Specify input columns so column pruning will be enforced
258
+ selected_cols = self._get_active_columns()
259
+ if len(selected_cols) > 0:
260
+ dataset = dataset.select(selected_cols)
261
+
262
+ self._snowpark_cols = dataset.select(self.input_cols).columns
263
+
264
+ # If we are already in a stored procedure, no need to kick off another one.
265
+ if SNOWML_SPROC_ENV in os.environ:
266
+ statement_params = telemetry.get_function_usage_statement_params(
267
+ project=_PROJECT,
268
+ subproject=_SUBPROJECT,
269
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AdaBoostRegressor.__class__.__name__),
270
+ api_calls=[Session.call],
271
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
272
+ )
273
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
274
+ pd_df.columns = dataset.columns
275
+ dataset = pd_df
276
+
277
+ model_trainer = ModelTrainerBuilder.build(
278
+ estimator=self._sklearn_object,
279
+ dataset=dataset,
280
+ input_cols=self.input_cols,
281
+ label_cols=self.label_cols,
282
+ sample_weight_col=self.sample_weight_col,
283
+ autogenerated=self._autogenerated,
284
+ subproject=_SUBPROJECT
285
+ )
286
+ self._sklearn_object = model_trainer.train()
263
287
  self._is_fitted = True
264
288
  self._get_model_signatures(dataset)
265
289
  return self
266
290
 
267
- def _fit_snowpark(self, dataset: DataFrame) -> None:
268
- session = dataset._session
269
- assert session is not None # keep mypy happy
270
- # Validate that key package version in user workspace are supported in snowflake conda channel
271
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
272
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
273
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
274
-
275
- # Specify input columns so column pruning will be enforced
276
- selected_cols = self._get_active_columns()
277
- if len(selected_cols) > 0:
278
- dataset = dataset.select(selected_cols)
279
-
280
- estimator = self._sklearn_object
281
- assert estimator is not None # Keep mypy happy
282
-
283
- self._snowpark_cols = dataset.select(self.input_cols).columns
284
-
285
- self._sklearn_object = self._handlers.fit_snowpark(
286
- dataset,
287
- session,
288
- estimator,
289
- ["snowflake-snowpark-python"] + self._get_dependencies(),
290
- self.input_cols,
291
- self.label_cols,
292
- self.sample_weight_col,
293
- )
294
-
295
291
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
296
292
  if self._drop_input_cols:
297
293
  return []
@@ -479,11 +475,6 @@ class AdaBoostRegressor(BaseTransformer):
479
475
  subproject=_SUBPROJECT,
480
476
  custom_tags=dict([("autogen", True)]),
481
477
  )
482
- @telemetry.add_stmt_params_to_df(
483
- project=_PROJECT,
484
- subproject=_SUBPROJECT,
485
- custom_tags=dict([("autogen", True)]),
486
- )
487
478
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
488
479
  """Predict regression value for X
489
480
  For more details on this function, see [sklearn.ensemble.AdaBoostRegressor.predict]
@@ -537,11 +528,6 @@ class AdaBoostRegressor(BaseTransformer):
537
528
  subproject=_SUBPROJECT,
538
529
  custom_tags=dict([("autogen", True)]),
539
530
  )
540
- @telemetry.add_stmt_params_to_df(
541
- project=_PROJECT,
542
- subproject=_SUBPROJECT,
543
- custom_tags=dict([("autogen", True)]),
544
- )
545
531
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
546
532
  """Method not supported for this class.
547
533
 
@@ -598,7 +584,8 @@ class AdaBoostRegressor(BaseTransformer):
598
584
  if False:
599
585
  self.fit(dataset)
600
586
  assert self._sklearn_object is not None
601
- return self._sklearn_object.labels_
587
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
588
+ return labels
602
589
  else:
603
590
  raise NotImplementedError
604
591
 
@@ -634,6 +621,7 @@ class AdaBoostRegressor(BaseTransformer):
634
621
  output_cols = []
635
622
 
636
623
  # Make sure column names are valid snowflake identifiers.
624
+ assert output_cols is not None # Make MyPy happy
637
625
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
638
626
 
639
627
  return rv
@@ -644,11 +632,6 @@ class AdaBoostRegressor(BaseTransformer):
644
632
  subproject=_SUBPROJECT,
645
633
  custom_tags=dict([("autogen", True)]),
646
634
  )
647
- @telemetry.add_stmt_params_to_df(
648
- project=_PROJECT,
649
- subproject=_SUBPROJECT,
650
- custom_tags=dict([("autogen", True)]),
651
- )
652
635
  def predict_proba(
653
636
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
654
637
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -689,11 +672,6 @@ class AdaBoostRegressor(BaseTransformer):
689
672
  subproject=_SUBPROJECT,
690
673
  custom_tags=dict([("autogen", True)]),
691
674
  )
692
- @telemetry.add_stmt_params_to_df(
693
- project=_PROJECT,
694
- subproject=_SUBPROJECT,
695
- custom_tags=dict([("autogen", True)]),
696
- )
697
675
  def predict_log_proba(
698
676
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
699
677
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -730,16 +708,6 @@ class AdaBoostRegressor(BaseTransformer):
730
708
  return output_df
731
709
 
732
710
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
733
- @telemetry.send_api_usage_telemetry(
734
- project=_PROJECT,
735
- subproject=_SUBPROJECT,
736
- custom_tags=dict([("autogen", True)]),
737
- )
738
- @telemetry.add_stmt_params_to_df(
739
- project=_PROJECT,
740
- subproject=_SUBPROJECT,
741
- custom_tags=dict([("autogen", True)]),
742
- )
743
711
  def decision_function(
744
712
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
745
713
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -840,11 +808,6 @@ class AdaBoostRegressor(BaseTransformer):
840
808
  subproject=_SUBPROJECT,
841
809
  custom_tags=dict([("autogen", True)]),
842
810
  )
843
- @telemetry.add_stmt_params_to_df(
844
- project=_PROJECT,
845
- subproject=_SUBPROJECT,
846
- custom_tags=dict([("autogen", True)]),
847
- )
848
811
  def kneighbors(
849
812
  self,
850
813
  dataset: Union[DataFrame, pd.DataFrame],
@@ -904,18 +867,28 @@ class AdaBoostRegressor(BaseTransformer):
904
867
  # For classifier, the type of predict is the same as the type of label
905
868
  if self._sklearn_object._estimator_type == 'classifier':
906
869
  # label columns is the desired type for output
907
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
870
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
908
871
  # rename the output columns
909
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
872
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
910
873
  self._model_signature_dict["predict"] = ModelSignature(inputs,
911
874
  ([] if self._drop_input_cols else inputs)
912
875
  + outputs)
876
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
877
+ # For outlier models, returns -1 for outliers and 1 for inliers.
878
+ # Clusterer returns int64 cluster labels.
879
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
880
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
881
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
882
+ ([] if self._drop_input_cols else inputs)
883
+ + outputs)
884
+
913
885
  # For regressor, the type of predict is float64
914
886
  elif self._sklearn_object._estimator_type == 'regressor':
915
887
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
916
888
  self._model_signature_dict["predict"] = ModelSignature(inputs,
917
889
  ([] if self._drop_input_cols else inputs)
918
890
  + outputs)
891
+
919
892
  for prob_func in PROB_FUNCTIONS:
920
893
  if hasattr(self, prob_func):
921
894
  output_cols_prefix: str = f"{prob_func}_"