snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class AdaBoostRegressor(BaseTransformer):
|
57
58
|
r"""An AdaBoost regressor
|
58
59
|
For more details on this class, see [sklearn.ensemble.AdaBoostRegressor]
|
@@ -60,6 +61,51 @@ class AdaBoostRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimator: object, default=None
|
64
110
|
The base estimator from which the boosted ensemble is built.
|
65
111
|
If ``None``, then the base estimator is
|
@@ -95,35 +141,6 @@ class AdaBoostRegressor(BaseTransformer):
|
|
95
141
|
If ``None``, then the base estimator is
|
96
142
|
:class:`~sklearn.tree.DecisionTreeRegressor` initialized with
|
97
143
|
`max_depth=3`.
|
98
|
-
|
99
|
-
input_cols: Optional[Union[str, List[str]]]
|
100
|
-
A string or list of strings representing column names that contain features.
|
101
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
102
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
103
|
-
considered input columns.
|
104
|
-
|
105
|
-
label_cols: Optional[Union[str, List[str]]]
|
106
|
-
A string or list of strings representing column names that contain labels.
|
107
|
-
This is a required param for estimators, as there is no way to infer these
|
108
|
-
columns. If this parameter is not specified, then object is fitted without
|
109
|
-
labels (like a transformer).
|
110
|
-
|
111
|
-
output_cols: Optional[Union[str, List[str]]]
|
112
|
-
A string or list of strings representing column names that will store the
|
113
|
-
output of predict and transform operations. The length of output_cols must
|
114
|
-
match the expected number of output columns from the specific estimator or
|
115
|
-
transformer class used.
|
116
|
-
If this parameter is not specified, output column names are derived by
|
117
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
118
|
-
column names work for estimator's predict() method, but output_cols must
|
119
|
-
be set explicitly for transformers.
|
120
|
-
|
121
|
-
sample_weight_col: Optional[str]
|
122
|
-
A string representing the column name containing the sample weights.
|
123
|
-
This argument is only required when working with weighted datasets.
|
124
|
-
|
125
|
-
drop_input_cols: Optional[bool], default=False
|
126
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
127
144
|
"""
|
128
145
|
|
129
146
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -138,6 +155,7 @@ class AdaBoostRegressor(BaseTransformer):
|
|
138
155
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
139
156
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
140
157
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
158
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
141
159
|
drop_input_cols: Optional[bool] = False,
|
142
160
|
sample_weight_col: Optional[str] = None,
|
143
161
|
) -> None:
|
@@ -146,9 +164,10 @@ class AdaBoostRegressor(BaseTransformer):
|
|
146
164
|
self.set_input_cols(input_cols)
|
147
165
|
self.set_output_cols(output_cols)
|
148
166
|
self.set_label_cols(label_cols)
|
167
|
+
self.set_passthrough_cols(passthrough_cols)
|
149
168
|
self.set_drop_input_cols(drop_input_cols)
|
150
169
|
self.set_sample_weight_col(sample_weight_col)
|
151
|
-
deps = set(
|
170
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
152
171
|
deps = deps | gather_dependencies(estimator)
|
153
172
|
deps = deps | gather_dependencies(base_estimator)
|
154
173
|
self._deps = list(deps)
|
@@ -164,13 +183,14 @@ class AdaBoostRegressor(BaseTransformer):
|
|
164
183
|
args=init_args,
|
165
184
|
klass=sklearn.ensemble.AdaBoostRegressor
|
166
185
|
)
|
167
|
-
self._sklearn_object = sklearn.ensemble.AdaBoostRegressor(
|
186
|
+
self._sklearn_object: Any = sklearn.ensemble.AdaBoostRegressor(
|
168
187
|
**cleaned_up_init_args,
|
169
188
|
)
|
170
189
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
171
190
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
172
191
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
173
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdaBoostRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
192
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdaBoostRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
193
|
+
self._autogenerated = True
|
174
194
|
|
175
195
|
def _get_rand_id(self) -> str:
|
176
196
|
"""
|
@@ -181,24 +201,6 @@ class AdaBoostRegressor(BaseTransformer):
|
|
181
201
|
"""
|
182
202
|
return str(uuid4()).replace("-", "_").upper()
|
183
203
|
|
184
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
185
|
-
"""
|
186
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
187
|
-
|
188
|
-
Args:
|
189
|
-
dataset: Input dataset.
|
190
|
-
"""
|
191
|
-
if not self.input_cols:
|
192
|
-
cols = [
|
193
|
-
c for c in dataset.columns
|
194
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
195
|
-
]
|
196
|
-
self.set_input_cols(input_cols=cols)
|
197
|
-
|
198
|
-
if not self.output_cols:
|
199
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
200
|
-
self.set_output_cols(output_cols=cols)
|
201
|
-
|
202
204
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "AdaBoostRegressor":
|
203
205
|
"""
|
204
206
|
Input columns setter.
|
@@ -244,54 +246,48 @@ class AdaBoostRegressor(BaseTransformer):
|
|
244
246
|
self
|
245
247
|
"""
|
246
248
|
self._infer_input_output_cols(dataset)
|
247
|
-
if isinstance(dataset,
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
self.
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
249
|
+
if isinstance(dataset, DataFrame):
|
250
|
+
session = dataset._session
|
251
|
+
assert session is not None # keep mypy happy
|
252
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
253
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
254
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
255
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
256
|
+
|
257
|
+
# Specify input columns so column pruning will be enforced
|
258
|
+
selected_cols = self._get_active_columns()
|
259
|
+
if len(selected_cols) > 0:
|
260
|
+
dataset = dataset.select(selected_cols)
|
261
|
+
|
262
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
263
|
+
|
264
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
265
|
+
if SNOWML_SPROC_ENV in os.environ:
|
266
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
267
|
+
project=_PROJECT,
|
268
|
+
subproject=_SUBPROJECT,
|
269
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AdaBoostRegressor.__class__.__name__),
|
270
|
+
api_calls=[Session.call],
|
271
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
272
|
+
)
|
273
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
274
|
+
pd_df.columns = dataset.columns
|
275
|
+
dataset = pd_df
|
276
|
+
|
277
|
+
model_trainer = ModelTrainerBuilder.build(
|
278
|
+
estimator=self._sklearn_object,
|
279
|
+
dataset=dataset,
|
280
|
+
input_cols=self.input_cols,
|
281
|
+
label_cols=self.label_cols,
|
282
|
+
sample_weight_col=self.sample_weight_col,
|
283
|
+
autogenerated=self._autogenerated,
|
284
|
+
subproject=_SUBPROJECT
|
285
|
+
)
|
286
|
+
self._sklearn_object = model_trainer.train()
|
263
287
|
self._is_fitted = True
|
264
288
|
self._get_model_signatures(dataset)
|
265
289
|
return self
|
266
290
|
|
267
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
268
|
-
session = dataset._session
|
269
|
-
assert session is not None # keep mypy happy
|
270
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
271
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
272
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
273
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
274
|
-
|
275
|
-
# Specify input columns so column pruning will be enforced
|
276
|
-
selected_cols = self._get_active_columns()
|
277
|
-
if len(selected_cols) > 0:
|
278
|
-
dataset = dataset.select(selected_cols)
|
279
|
-
|
280
|
-
estimator = self._sklearn_object
|
281
|
-
assert estimator is not None # Keep mypy happy
|
282
|
-
|
283
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
284
|
-
|
285
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
286
|
-
dataset,
|
287
|
-
session,
|
288
|
-
estimator,
|
289
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
290
|
-
self.input_cols,
|
291
|
-
self.label_cols,
|
292
|
-
self.sample_weight_col,
|
293
|
-
)
|
294
|
-
|
295
291
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
296
292
|
if self._drop_input_cols:
|
297
293
|
return []
|
@@ -479,11 +475,6 @@ class AdaBoostRegressor(BaseTransformer):
|
|
479
475
|
subproject=_SUBPROJECT,
|
480
476
|
custom_tags=dict([("autogen", True)]),
|
481
477
|
)
|
482
|
-
@telemetry.add_stmt_params_to_df(
|
483
|
-
project=_PROJECT,
|
484
|
-
subproject=_SUBPROJECT,
|
485
|
-
custom_tags=dict([("autogen", True)]),
|
486
|
-
)
|
487
478
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
488
479
|
"""Predict regression value for X
|
489
480
|
For more details on this function, see [sklearn.ensemble.AdaBoostRegressor.predict]
|
@@ -537,11 +528,6 @@ class AdaBoostRegressor(BaseTransformer):
|
|
537
528
|
subproject=_SUBPROJECT,
|
538
529
|
custom_tags=dict([("autogen", True)]),
|
539
530
|
)
|
540
|
-
@telemetry.add_stmt_params_to_df(
|
541
|
-
project=_PROJECT,
|
542
|
-
subproject=_SUBPROJECT,
|
543
|
-
custom_tags=dict([("autogen", True)]),
|
544
|
-
)
|
545
531
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
546
532
|
"""Method not supported for this class.
|
547
533
|
|
@@ -598,7 +584,8 @@ class AdaBoostRegressor(BaseTransformer):
|
|
598
584
|
if False:
|
599
585
|
self.fit(dataset)
|
600
586
|
assert self._sklearn_object is not None
|
601
|
-
|
587
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
588
|
+
return labels
|
602
589
|
else:
|
603
590
|
raise NotImplementedError
|
604
591
|
|
@@ -634,6 +621,7 @@ class AdaBoostRegressor(BaseTransformer):
|
|
634
621
|
output_cols = []
|
635
622
|
|
636
623
|
# Make sure column names are valid snowflake identifiers.
|
624
|
+
assert output_cols is not None # Make MyPy happy
|
637
625
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
638
626
|
|
639
627
|
return rv
|
@@ -644,11 +632,6 @@ class AdaBoostRegressor(BaseTransformer):
|
|
644
632
|
subproject=_SUBPROJECT,
|
645
633
|
custom_tags=dict([("autogen", True)]),
|
646
634
|
)
|
647
|
-
@telemetry.add_stmt_params_to_df(
|
648
|
-
project=_PROJECT,
|
649
|
-
subproject=_SUBPROJECT,
|
650
|
-
custom_tags=dict([("autogen", True)]),
|
651
|
-
)
|
652
635
|
def predict_proba(
|
653
636
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
654
637
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -689,11 +672,6 @@ class AdaBoostRegressor(BaseTransformer):
|
|
689
672
|
subproject=_SUBPROJECT,
|
690
673
|
custom_tags=dict([("autogen", True)]),
|
691
674
|
)
|
692
|
-
@telemetry.add_stmt_params_to_df(
|
693
|
-
project=_PROJECT,
|
694
|
-
subproject=_SUBPROJECT,
|
695
|
-
custom_tags=dict([("autogen", True)]),
|
696
|
-
)
|
697
675
|
def predict_log_proba(
|
698
676
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
699
677
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -730,16 +708,6 @@ class AdaBoostRegressor(BaseTransformer):
|
|
730
708
|
return output_df
|
731
709
|
|
732
710
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
733
|
-
@telemetry.send_api_usage_telemetry(
|
734
|
-
project=_PROJECT,
|
735
|
-
subproject=_SUBPROJECT,
|
736
|
-
custom_tags=dict([("autogen", True)]),
|
737
|
-
)
|
738
|
-
@telemetry.add_stmt_params_to_df(
|
739
|
-
project=_PROJECT,
|
740
|
-
subproject=_SUBPROJECT,
|
741
|
-
custom_tags=dict([("autogen", True)]),
|
742
|
-
)
|
743
711
|
def decision_function(
|
744
712
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
745
713
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -840,11 +808,6 @@ class AdaBoostRegressor(BaseTransformer):
|
|
840
808
|
subproject=_SUBPROJECT,
|
841
809
|
custom_tags=dict([("autogen", True)]),
|
842
810
|
)
|
843
|
-
@telemetry.add_stmt_params_to_df(
|
844
|
-
project=_PROJECT,
|
845
|
-
subproject=_SUBPROJECT,
|
846
|
-
custom_tags=dict([("autogen", True)]),
|
847
|
-
)
|
848
811
|
def kneighbors(
|
849
812
|
self,
|
850
813
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -904,18 +867,28 @@ class AdaBoostRegressor(BaseTransformer):
|
|
904
867
|
# For classifier, the type of predict is the same as the type of label
|
905
868
|
if self._sklearn_object._estimator_type == 'classifier':
|
906
869
|
# label columns is the desired type for output
|
907
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
870
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
908
871
|
# rename the output columns
|
909
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
872
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
910
873
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
911
874
|
([] if self._drop_input_cols else inputs)
|
912
875
|
+ outputs)
|
876
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
877
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
878
|
+
# Clusterer returns int64 cluster labels.
|
879
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
880
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
881
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
882
|
+
([] if self._drop_input_cols else inputs)
|
883
|
+
+ outputs)
|
884
|
+
|
913
885
|
# For regressor, the type of predict is float64
|
914
886
|
elif self._sklearn_object._estimator_type == 'regressor':
|
915
887
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
916
888
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
917
889
|
([] if self._drop_input_cols else inputs)
|
918
890
|
+ outputs)
|
891
|
+
|
919
892
|
for prob_func in PROB_FUNCTIONS:
|
920
893
|
if hasattr(self, prob_func):
|
921
894
|
output_cols_prefix: str = f"{prob_func}_"
|