snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SparsePCA(BaseTransformer):
|
57
58
|
r"""Sparse Principal Components Analysis (SparsePCA)
|
58
59
|
For more details on this class, see [sklearn.decomposition.SparsePCA]
|
@@ -60,6 +61,49 @@ class SparsePCA(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of sparse atoms to extract. If None, then ``n_components``
|
65
109
|
is set to ``n_features``.
|
@@ -107,35 +151,6 @@ class SparsePCA(BaseTransformer):
|
|
107
151
|
Used during dictionary learning. Pass an int for reproducible results
|
108
152
|
across multiple function calls.
|
109
153
|
See :term:`Glossary <random_state>`.
|
110
|
-
|
111
|
-
input_cols: Optional[Union[str, List[str]]]
|
112
|
-
A string or list of strings representing column names that contain features.
|
113
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
114
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
115
|
-
considered input columns.
|
116
|
-
|
117
|
-
label_cols: Optional[Union[str, List[str]]]
|
118
|
-
A string or list of strings representing column names that contain labels.
|
119
|
-
This is a required param for estimators, as there is no way to infer these
|
120
|
-
columns. If this parameter is not specified, then object is fitted without
|
121
|
-
labels (like a transformer).
|
122
|
-
|
123
|
-
output_cols: Optional[Union[str, List[str]]]
|
124
|
-
A string or list of strings representing column names that will store the
|
125
|
-
output of predict and transform operations. The length of output_cols must
|
126
|
-
match the expected number of output columns from the specific estimator or
|
127
|
-
transformer class used.
|
128
|
-
If this parameter is not specified, output column names are derived by
|
129
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
130
|
-
column names work for estimator's predict() method, but output_cols must
|
131
|
-
be set explicitly for transformers.
|
132
|
-
|
133
|
-
sample_weight_col: Optional[str]
|
134
|
-
A string representing the column name containing the sample weights.
|
135
|
-
This argument is only required when working with weighted datasets.
|
136
|
-
|
137
|
-
drop_input_cols: Optional[bool], default=False
|
138
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
139
154
|
"""
|
140
155
|
|
141
156
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -155,6 +170,7 @@ class SparsePCA(BaseTransformer):
|
|
155
170
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
156
171
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
157
172
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
173
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
158
174
|
drop_input_cols: Optional[bool] = False,
|
159
175
|
sample_weight_col: Optional[str] = None,
|
160
176
|
) -> None:
|
@@ -163,9 +179,10 @@ class SparsePCA(BaseTransformer):
|
|
163
179
|
self.set_input_cols(input_cols)
|
164
180
|
self.set_output_cols(output_cols)
|
165
181
|
self.set_label_cols(label_cols)
|
182
|
+
self.set_passthrough_cols(passthrough_cols)
|
166
183
|
self.set_drop_input_cols(drop_input_cols)
|
167
184
|
self.set_sample_weight_col(sample_weight_col)
|
168
|
-
deps = set(
|
185
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
169
186
|
|
170
187
|
self._deps = list(deps)
|
171
188
|
|
@@ -184,13 +201,14 @@ class SparsePCA(BaseTransformer):
|
|
184
201
|
args=init_args,
|
185
202
|
klass=sklearn.decomposition.SparsePCA
|
186
203
|
)
|
187
|
-
self._sklearn_object = sklearn.decomposition.SparsePCA(
|
204
|
+
self._sklearn_object: Any = sklearn.decomposition.SparsePCA(
|
188
205
|
**cleaned_up_init_args,
|
189
206
|
)
|
190
207
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
191
208
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
192
209
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
193
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SparsePCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
210
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SparsePCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
211
|
+
self._autogenerated = True
|
194
212
|
|
195
213
|
def _get_rand_id(self) -> str:
|
196
214
|
"""
|
@@ -201,24 +219,6 @@ class SparsePCA(BaseTransformer):
|
|
201
219
|
"""
|
202
220
|
return str(uuid4()).replace("-", "_").upper()
|
203
221
|
|
204
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
205
|
-
"""
|
206
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
207
|
-
|
208
|
-
Args:
|
209
|
-
dataset: Input dataset.
|
210
|
-
"""
|
211
|
-
if not self.input_cols:
|
212
|
-
cols = [
|
213
|
-
c for c in dataset.columns
|
214
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
215
|
-
]
|
216
|
-
self.set_input_cols(input_cols=cols)
|
217
|
-
|
218
|
-
if not self.output_cols:
|
219
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
220
|
-
self.set_output_cols(output_cols=cols)
|
221
|
-
|
222
222
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SparsePCA":
|
223
223
|
"""
|
224
224
|
Input columns setter.
|
@@ -264,54 +264,48 @@ class SparsePCA(BaseTransformer):
|
|
264
264
|
self
|
265
265
|
"""
|
266
266
|
self._infer_input_output_cols(dataset)
|
267
|
-
if isinstance(dataset,
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
self.
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
267
|
+
if isinstance(dataset, DataFrame):
|
268
|
+
session = dataset._session
|
269
|
+
assert session is not None # keep mypy happy
|
270
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
271
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
272
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
273
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
274
|
+
|
275
|
+
# Specify input columns so column pruning will be enforced
|
276
|
+
selected_cols = self._get_active_columns()
|
277
|
+
if len(selected_cols) > 0:
|
278
|
+
dataset = dataset.select(selected_cols)
|
279
|
+
|
280
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
281
|
+
|
282
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
283
|
+
if SNOWML_SPROC_ENV in os.environ:
|
284
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
285
|
+
project=_PROJECT,
|
286
|
+
subproject=_SUBPROJECT,
|
287
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SparsePCA.__class__.__name__),
|
288
|
+
api_calls=[Session.call],
|
289
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
290
|
+
)
|
291
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
292
|
+
pd_df.columns = dataset.columns
|
293
|
+
dataset = pd_df
|
294
|
+
|
295
|
+
model_trainer = ModelTrainerBuilder.build(
|
296
|
+
estimator=self._sklearn_object,
|
297
|
+
dataset=dataset,
|
298
|
+
input_cols=self.input_cols,
|
299
|
+
label_cols=self.label_cols,
|
300
|
+
sample_weight_col=self.sample_weight_col,
|
301
|
+
autogenerated=self._autogenerated,
|
302
|
+
subproject=_SUBPROJECT
|
303
|
+
)
|
304
|
+
self._sklearn_object = model_trainer.train()
|
283
305
|
self._is_fitted = True
|
284
306
|
self._get_model_signatures(dataset)
|
285
307
|
return self
|
286
308
|
|
287
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
288
|
-
session = dataset._session
|
289
|
-
assert session is not None # keep mypy happy
|
290
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
291
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
292
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
293
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
294
|
-
|
295
|
-
# Specify input columns so column pruning will be enforced
|
296
|
-
selected_cols = self._get_active_columns()
|
297
|
-
if len(selected_cols) > 0:
|
298
|
-
dataset = dataset.select(selected_cols)
|
299
|
-
|
300
|
-
estimator = self._sklearn_object
|
301
|
-
assert estimator is not None # Keep mypy happy
|
302
|
-
|
303
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
304
|
-
|
305
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
306
|
-
dataset,
|
307
|
-
session,
|
308
|
-
estimator,
|
309
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
310
|
-
self.input_cols,
|
311
|
-
self.label_cols,
|
312
|
-
self.sample_weight_col,
|
313
|
-
)
|
314
|
-
|
315
309
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
316
310
|
if self._drop_input_cols:
|
317
311
|
return []
|
@@ -499,11 +493,6 @@ class SparsePCA(BaseTransformer):
|
|
499
493
|
subproject=_SUBPROJECT,
|
500
494
|
custom_tags=dict([("autogen", True)]),
|
501
495
|
)
|
502
|
-
@telemetry.add_stmt_params_to_df(
|
503
|
-
project=_PROJECT,
|
504
|
-
subproject=_SUBPROJECT,
|
505
|
-
custom_tags=dict([("autogen", True)]),
|
506
|
-
)
|
507
496
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
508
497
|
"""Method not supported for this class.
|
509
498
|
|
@@ -555,11 +544,6 @@ class SparsePCA(BaseTransformer):
|
|
555
544
|
subproject=_SUBPROJECT,
|
556
545
|
custom_tags=dict([("autogen", True)]),
|
557
546
|
)
|
558
|
-
@telemetry.add_stmt_params_to_df(
|
559
|
-
project=_PROJECT,
|
560
|
-
subproject=_SUBPROJECT,
|
561
|
-
custom_tags=dict([("autogen", True)]),
|
562
|
-
)
|
563
547
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
564
548
|
"""Least Squares projection of the data onto the sparse components
|
565
549
|
For more details on this function, see [sklearn.decomposition.SparsePCA.transform]
|
@@ -618,7 +602,8 @@ class SparsePCA(BaseTransformer):
|
|
618
602
|
if False:
|
619
603
|
self.fit(dataset)
|
620
604
|
assert self._sklearn_object is not None
|
621
|
-
|
605
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
606
|
+
return labels
|
622
607
|
else:
|
623
608
|
raise NotImplementedError
|
624
609
|
|
@@ -654,6 +639,7 @@ class SparsePCA(BaseTransformer):
|
|
654
639
|
output_cols = []
|
655
640
|
|
656
641
|
# Make sure column names are valid snowflake identifiers.
|
642
|
+
assert output_cols is not None # Make MyPy happy
|
657
643
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
658
644
|
|
659
645
|
return rv
|
@@ -664,11 +650,6 @@ class SparsePCA(BaseTransformer):
|
|
664
650
|
subproject=_SUBPROJECT,
|
665
651
|
custom_tags=dict([("autogen", True)]),
|
666
652
|
)
|
667
|
-
@telemetry.add_stmt_params_to_df(
|
668
|
-
project=_PROJECT,
|
669
|
-
subproject=_SUBPROJECT,
|
670
|
-
custom_tags=dict([("autogen", True)]),
|
671
|
-
)
|
672
653
|
def predict_proba(
|
673
654
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
674
655
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -709,11 +690,6 @@ class SparsePCA(BaseTransformer):
|
|
709
690
|
subproject=_SUBPROJECT,
|
710
691
|
custom_tags=dict([("autogen", True)]),
|
711
692
|
)
|
712
|
-
@telemetry.add_stmt_params_to_df(
|
713
|
-
project=_PROJECT,
|
714
|
-
subproject=_SUBPROJECT,
|
715
|
-
custom_tags=dict([("autogen", True)]),
|
716
|
-
)
|
717
693
|
def predict_log_proba(
|
718
694
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
719
695
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -750,16 +726,6 @@ class SparsePCA(BaseTransformer):
|
|
750
726
|
return output_df
|
751
727
|
|
752
728
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
753
|
-
@telemetry.send_api_usage_telemetry(
|
754
|
-
project=_PROJECT,
|
755
|
-
subproject=_SUBPROJECT,
|
756
|
-
custom_tags=dict([("autogen", True)]),
|
757
|
-
)
|
758
|
-
@telemetry.add_stmt_params_to_df(
|
759
|
-
project=_PROJECT,
|
760
|
-
subproject=_SUBPROJECT,
|
761
|
-
custom_tags=dict([("autogen", True)]),
|
762
|
-
)
|
763
729
|
def decision_function(
|
764
730
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
765
731
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -858,11 +824,6 @@ class SparsePCA(BaseTransformer):
|
|
858
824
|
subproject=_SUBPROJECT,
|
859
825
|
custom_tags=dict([("autogen", True)]),
|
860
826
|
)
|
861
|
-
@telemetry.add_stmt_params_to_df(
|
862
|
-
project=_PROJECT,
|
863
|
-
subproject=_SUBPROJECT,
|
864
|
-
custom_tags=dict([("autogen", True)]),
|
865
|
-
)
|
866
827
|
def kneighbors(
|
867
828
|
self,
|
868
829
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -922,18 +883,28 @@ class SparsePCA(BaseTransformer):
|
|
922
883
|
# For classifier, the type of predict is the same as the type of label
|
923
884
|
if self._sklearn_object._estimator_type == 'classifier':
|
924
885
|
# label columns is the desired type for output
|
925
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
886
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
926
887
|
# rename the output columns
|
927
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
888
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
889
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
890
|
+
([] if self._drop_input_cols else inputs)
|
891
|
+
+ outputs)
|
892
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
893
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
894
|
+
# Clusterer returns int64 cluster labels.
|
895
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
896
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
928
897
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
929
898
|
([] if self._drop_input_cols else inputs)
|
930
899
|
+ outputs)
|
900
|
+
|
931
901
|
# For regressor, the type of predict is float64
|
932
902
|
elif self._sklearn_object._estimator_type == 'regressor':
|
933
903
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
934
904
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
935
905
|
([] if self._drop_input_cols else inputs)
|
936
906
|
+ outputs)
|
907
|
+
|
937
908
|
for prob_func in PROB_FUNCTIONS:
|
938
909
|
if hasattr(self, prob_func):
|
939
910
|
output_cols_prefix: str = f"{prob_func}_"
|