snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class DecisionTreeRegressor(BaseTransformer):
|
57
58
|
r"""A decision tree regressor
|
58
59
|
For more details on this class, see [sklearn.tree.DecisionTreeRegressor]
|
@@ -60,6 +61,51 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
criterion: {"squared_error", "friedman_mse", "absolute_error", "poisson"}, default="squared_error"
|
64
110
|
The function to measure the quality of a split. Supported criteria
|
65
111
|
are "squared_error" for the mean squared error, which is equal to
|
@@ -158,35 +204,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
158
204
|
subtree with the largest cost complexity that is smaller than
|
159
205
|
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
|
160
206
|
:ref:`minimal_cost_complexity_pruning` for details.
|
161
|
-
|
162
|
-
input_cols: Optional[Union[str, List[str]]]
|
163
|
-
A string or list of strings representing column names that contain features.
|
164
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
165
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
166
|
-
considered input columns.
|
167
|
-
|
168
|
-
label_cols: Optional[Union[str, List[str]]]
|
169
|
-
A string or list of strings representing column names that contain labels.
|
170
|
-
This is a required param for estimators, as there is no way to infer these
|
171
|
-
columns. If this parameter is not specified, then object is fitted without
|
172
|
-
labels (like a transformer).
|
173
|
-
|
174
|
-
output_cols: Optional[Union[str, List[str]]]
|
175
|
-
A string or list of strings representing column names that will store the
|
176
|
-
output of predict and transform operations. The length of output_cols must
|
177
|
-
match the expected number of output columns from the specific estimator or
|
178
|
-
transformer class used.
|
179
|
-
If this parameter is not specified, output column names are derived by
|
180
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
181
|
-
column names work for estimator's predict() method, but output_cols must
|
182
|
-
be set explicitly for transformers.
|
183
|
-
|
184
|
-
sample_weight_col: Optional[str]
|
185
|
-
A string representing the column name containing the sample weights.
|
186
|
-
This argument is only required when working with weighted datasets.
|
187
|
-
|
188
|
-
drop_input_cols: Optional[bool], default=False
|
189
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
190
207
|
"""
|
191
208
|
|
192
209
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -206,6 +223,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
206
223
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
207
224
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
208
225
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
226
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
209
227
|
drop_input_cols: Optional[bool] = False,
|
210
228
|
sample_weight_col: Optional[str] = None,
|
211
229
|
) -> None:
|
@@ -214,9 +232,10 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
214
232
|
self.set_input_cols(input_cols)
|
215
233
|
self.set_output_cols(output_cols)
|
216
234
|
self.set_label_cols(label_cols)
|
235
|
+
self.set_passthrough_cols(passthrough_cols)
|
217
236
|
self.set_drop_input_cols(drop_input_cols)
|
218
237
|
self.set_sample_weight_col(sample_weight_col)
|
219
|
-
deps = set(
|
238
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
220
239
|
|
221
240
|
self._deps = list(deps)
|
222
241
|
|
@@ -235,13 +254,14 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
235
254
|
args=init_args,
|
236
255
|
klass=sklearn.tree.DecisionTreeRegressor
|
237
256
|
)
|
238
|
-
self._sklearn_object = sklearn.tree.DecisionTreeRegressor(
|
257
|
+
self._sklearn_object: Any = sklearn.tree.DecisionTreeRegressor(
|
239
258
|
**cleaned_up_init_args,
|
240
259
|
)
|
241
260
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
242
261
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
243
262
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
244
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
263
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
264
|
+
self._autogenerated = True
|
245
265
|
|
246
266
|
def _get_rand_id(self) -> str:
|
247
267
|
"""
|
@@ -252,24 +272,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
252
272
|
"""
|
253
273
|
return str(uuid4()).replace("-", "_").upper()
|
254
274
|
|
255
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
256
|
-
"""
|
257
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
258
|
-
|
259
|
-
Args:
|
260
|
-
dataset: Input dataset.
|
261
|
-
"""
|
262
|
-
if not self.input_cols:
|
263
|
-
cols = [
|
264
|
-
c for c in dataset.columns
|
265
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
266
|
-
]
|
267
|
-
self.set_input_cols(input_cols=cols)
|
268
|
-
|
269
|
-
if not self.output_cols:
|
270
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
271
|
-
self.set_output_cols(output_cols=cols)
|
272
|
-
|
273
275
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "DecisionTreeRegressor":
|
274
276
|
"""
|
275
277
|
Input columns setter.
|
@@ -315,54 +317,48 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
315
317
|
self
|
316
318
|
"""
|
317
319
|
self._infer_input_output_cols(dataset)
|
318
|
-
if isinstance(dataset,
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
self.
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
320
|
+
if isinstance(dataset, DataFrame):
|
321
|
+
session = dataset._session
|
322
|
+
assert session is not None # keep mypy happy
|
323
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
324
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
325
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
326
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
327
|
+
|
328
|
+
# Specify input columns so column pruning will be enforced
|
329
|
+
selected_cols = self._get_active_columns()
|
330
|
+
if len(selected_cols) > 0:
|
331
|
+
dataset = dataset.select(selected_cols)
|
332
|
+
|
333
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
334
|
+
|
335
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
336
|
+
if SNOWML_SPROC_ENV in os.environ:
|
337
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
338
|
+
project=_PROJECT,
|
339
|
+
subproject=_SUBPROJECT,
|
340
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DecisionTreeRegressor.__class__.__name__),
|
341
|
+
api_calls=[Session.call],
|
342
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
343
|
+
)
|
344
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
345
|
+
pd_df.columns = dataset.columns
|
346
|
+
dataset = pd_df
|
347
|
+
|
348
|
+
model_trainer = ModelTrainerBuilder.build(
|
349
|
+
estimator=self._sklearn_object,
|
350
|
+
dataset=dataset,
|
351
|
+
input_cols=self.input_cols,
|
352
|
+
label_cols=self.label_cols,
|
353
|
+
sample_weight_col=self.sample_weight_col,
|
354
|
+
autogenerated=self._autogenerated,
|
355
|
+
subproject=_SUBPROJECT
|
356
|
+
)
|
357
|
+
self._sklearn_object = model_trainer.train()
|
334
358
|
self._is_fitted = True
|
335
359
|
self._get_model_signatures(dataset)
|
336
360
|
return self
|
337
361
|
|
338
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
339
|
-
session = dataset._session
|
340
|
-
assert session is not None # keep mypy happy
|
341
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
342
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
343
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
344
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
345
|
-
|
346
|
-
# Specify input columns so column pruning will be enforced
|
347
|
-
selected_cols = self._get_active_columns()
|
348
|
-
if len(selected_cols) > 0:
|
349
|
-
dataset = dataset.select(selected_cols)
|
350
|
-
|
351
|
-
estimator = self._sklearn_object
|
352
|
-
assert estimator is not None # Keep mypy happy
|
353
|
-
|
354
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
355
|
-
|
356
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
357
|
-
dataset,
|
358
|
-
session,
|
359
|
-
estimator,
|
360
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
361
|
-
self.input_cols,
|
362
|
-
self.label_cols,
|
363
|
-
self.sample_weight_col,
|
364
|
-
)
|
365
|
-
|
366
362
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
367
363
|
if self._drop_input_cols:
|
368
364
|
return []
|
@@ -550,11 +546,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
550
546
|
subproject=_SUBPROJECT,
|
551
547
|
custom_tags=dict([("autogen", True)]),
|
552
548
|
)
|
553
|
-
@telemetry.add_stmt_params_to_df(
|
554
|
-
project=_PROJECT,
|
555
|
-
subproject=_SUBPROJECT,
|
556
|
-
custom_tags=dict([("autogen", True)]),
|
557
|
-
)
|
558
549
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
559
550
|
"""Predict class or regression value for X
|
560
551
|
For more details on this function, see [sklearn.tree.DecisionTreeRegressor.predict]
|
@@ -608,11 +599,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
608
599
|
subproject=_SUBPROJECT,
|
609
600
|
custom_tags=dict([("autogen", True)]),
|
610
601
|
)
|
611
|
-
@telemetry.add_stmt_params_to_df(
|
612
|
-
project=_PROJECT,
|
613
|
-
subproject=_SUBPROJECT,
|
614
|
-
custom_tags=dict([("autogen", True)]),
|
615
|
-
)
|
616
602
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
617
603
|
"""Method not supported for this class.
|
618
604
|
|
@@ -669,7 +655,8 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
669
655
|
if False:
|
670
656
|
self.fit(dataset)
|
671
657
|
assert self._sklearn_object is not None
|
672
|
-
|
658
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
659
|
+
return labels
|
673
660
|
else:
|
674
661
|
raise NotImplementedError
|
675
662
|
|
@@ -705,6 +692,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
705
692
|
output_cols = []
|
706
693
|
|
707
694
|
# Make sure column names are valid snowflake identifiers.
|
695
|
+
assert output_cols is not None # Make MyPy happy
|
708
696
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
709
697
|
|
710
698
|
return rv
|
@@ -715,11 +703,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
715
703
|
subproject=_SUBPROJECT,
|
716
704
|
custom_tags=dict([("autogen", True)]),
|
717
705
|
)
|
718
|
-
@telemetry.add_stmt_params_to_df(
|
719
|
-
project=_PROJECT,
|
720
|
-
subproject=_SUBPROJECT,
|
721
|
-
custom_tags=dict([("autogen", True)]),
|
722
|
-
)
|
723
706
|
def predict_proba(
|
724
707
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
725
708
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -760,11 +743,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
760
743
|
subproject=_SUBPROJECT,
|
761
744
|
custom_tags=dict([("autogen", True)]),
|
762
745
|
)
|
763
|
-
@telemetry.add_stmt_params_to_df(
|
764
|
-
project=_PROJECT,
|
765
|
-
subproject=_SUBPROJECT,
|
766
|
-
custom_tags=dict([("autogen", True)]),
|
767
|
-
)
|
768
746
|
def predict_log_proba(
|
769
747
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
770
748
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -801,16 +779,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
801
779
|
return output_df
|
802
780
|
|
803
781
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
804
|
-
@telemetry.send_api_usage_telemetry(
|
805
|
-
project=_PROJECT,
|
806
|
-
subproject=_SUBPROJECT,
|
807
|
-
custom_tags=dict([("autogen", True)]),
|
808
|
-
)
|
809
|
-
@telemetry.add_stmt_params_to_df(
|
810
|
-
project=_PROJECT,
|
811
|
-
subproject=_SUBPROJECT,
|
812
|
-
custom_tags=dict([("autogen", True)]),
|
813
|
-
)
|
814
782
|
def decision_function(
|
815
783
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
816
784
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -911,11 +879,6 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
911
879
|
subproject=_SUBPROJECT,
|
912
880
|
custom_tags=dict([("autogen", True)]),
|
913
881
|
)
|
914
|
-
@telemetry.add_stmt_params_to_df(
|
915
|
-
project=_PROJECT,
|
916
|
-
subproject=_SUBPROJECT,
|
917
|
-
custom_tags=dict([("autogen", True)]),
|
918
|
-
)
|
919
882
|
def kneighbors(
|
920
883
|
self,
|
921
884
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -975,18 +938,28 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
975
938
|
# For classifier, the type of predict is the same as the type of label
|
976
939
|
if self._sklearn_object._estimator_type == 'classifier':
|
977
940
|
# label columns is the desired type for output
|
978
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
941
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
979
942
|
# rename the output columns
|
980
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
943
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
981
944
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
982
945
|
([] if self._drop_input_cols else inputs)
|
983
946
|
+ outputs)
|
947
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
948
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
949
|
+
# Clusterer returns int64 cluster labels.
|
950
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
951
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
952
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
953
|
+
([] if self._drop_input_cols else inputs)
|
954
|
+
+ outputs)
|
955
|
+
|
984
956
|
# For regressor, the type of predict is float64
|
985
957
|
elif self._sklearn_object._estimator_type == 'regressor':
|
986
958
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
987
959
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
988
960
|
([] if self._drop_input_cols else inputs)
|
989
961
|
+ outputs)
|
962
|
+
|
990
963
|
for prob_func in PROB_FUNCTIONS:
|
991
964
|
if hasattr(self, prob_func):
|
992
965
|
output_cols_prefix: str = f"{prob_func}_"
|