snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MissingIndicator(BaseTransformer):
57
58
  r"""Binary indicators for missing values
58
59
  For more details on this class, see [sklearn.impute.MissingIndicator]
@@ -60,6 +61,49 @@ class MissingIndicator(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  missing_values: int, float, str, np.nan or None, default=np.nan
64
108
  The placeholder for the missing values. All occurrences of
65
109
  `missing_values` will be imputed. For pandas' dataframes with
@@ -86,35 +130,6 @@ class MissingIndicator(BaseTransformer):
86
130
  If `True`, :meth:`transform` will raise an error when there are
87
131
  features with missing values that have no missing values in
88
132
  :meth:`fit`. This is applicable only when `features='missing-only'`.
89
-
90
- input_cols: Optional[Union[str, List[str]]]
91
- A string or list of strings representing column names that contain features.
92
- If this parameter is not specified, all columns in the input DataFrame except
93
- the columns specified by label_cols and sample_weight_col parameters are
94
- considered input columns.
95
-
96
- label_cols: Optional[Union[str, List[str]]]
97
- A string or list of strings representing column names that contain labels.
98
- This is a required param for estimators, as there is no way to infer these
99
- columns. If this parameter is not specified, then object is fitted without
100
- labels (like a transformer).
101
-
102
- output_cols: Optional[Union[str, List[str]]]
103
- A string or list of strings representing column names that will store the
104
- output of predict and transform operations. The length of output_cols must
105
- match the expected number of output columns from the specific estimator or
106
- transformer class used.
107
- If this parameter is not specified, output column names are derived by
108
- adding an OUTPUT_ prefix to the label column names. These inferred output
109
- column names work for estimator's predict() method, but output_cols must
110
- be set explicitly for transformers.
111
-
112
- sample_weight_col: Optional[str]
113
- A string representing the column name containing the sample weights.
114
- This argument is only required when working with weighted datasets.
115
-
116
- drop_input_cols: Optional[bool], default=False
117
- If set, the response of predict(), transform() methods will not contain input columns.
118
133
  """
119
134
 
120
135
  def __init__( # type: ignore[no-untyped-def]
@@ -127,6 +142,7 @@ class MissingIndicator(BaseTransformer):
127
142
  input_cols: Optional[Union[str, Iterable[str]]] = None,
128
143
  output_cols: Optional[Union[str, Iterable[str]]] = None,
129
144
  label_cols: Optional[Union[str, Iterable[str]]] = None,
145
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
130
146
  drop_input_cols: Optional[bool] = False,
131
147
  sample_weight_col: Optional[str] = None,
132
148
  ) -> None:
@@ -135,9 +151,10 @@ class MissingIndicator(BaseTransformer):
135
151
  self.set_input_cols(input_cols)
136
152
  self.set_output_cols(output_cols)
137
153
  self.set_label_cols(label_cols)
154
+ self.set_passthrough_cols(passthrough_cols)
138
155
  self.set_drop_input_cols(drop_input_cols)
139
156
  self.set_sample_weight_col(sample_weight_col)
140
- deps = set(SklearnWrapperProvider().dependencies)
157
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
141
158
 
142
159
  self._deps = list(deps)
143
160
 
@@ -149,13 +166,14 @@ class MissingIndicator(BaseTransformer):
149
166
  args=init_args,
150
167
  klass=sklearn.impute.MissingIndicator
151
168
  )
152
- self._sklearn_object = sklearn.impute.MissingIndicator(
169
+ self._sklearn_object: Any = sklearn.impute.MissingIndicator(
153
170
  **cleaned_up_init_args,
154
171
  )
155
172
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
156
173
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
157
174
  self._snowpark_cols: Optional[List[str]] = self.input_cols
158
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MissingIndicator.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
175
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MissingIndicator.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
176
+ self._autogenerated = True
159
177
 
160
178
  def _get_rand_id(self) -> str:
161
179
  """
@@ -166,24 +184,6 @@ class MissingIndicator(BaseTransformer):
166
184
  """
167
185
  return str(uuid4()).replace("-", "_").upper()
168
186
 
169
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
170
- """
171
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
172
-
173
- Args:
174
- dataset: Input dataset.
175
- """
176
- if not self.input_cols:
177
- cols = [
178
- c for c in dataset.columns
179
- if c not in self.get_label_cols() and c != self.sample_weight_col
180
- ]
181
- self.set_input_cols(input_cols=cols)
182
-
183
- if not self.output_cols:
184
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
185
- self.set_output_cols(output_cols=cols)
186
-
187
187
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MissingIndicator":
188
188
  """
189
189
  Input columns setter.
@@ -229,54 +229,48 @@ class MissingIndicator(BaseTransformer):
229
229
  self
230
230
  """
231
231
  self._infer_input_output_cols(dataset)
232
- if isinstance(dataset, pd.DataFrame):
233
- assert self._sklearn_object is not None # keep mypy happy
234
- self._sklearn_object = self._handlers.fit_pandas(
235
- dataset,
236
- self._sklearn_object,
237
- self.input_cols,
238
- self.label_cols,
239
- self.sample_weight_col
240
- )
241
- elif isinstance(dataset, DataFrame):
242
- self._fit_snowpark(dataset)
243
- else:
244
- raise TypeError(
245
- f"Unexpected dataset type: {type(dataset)}."
246
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
247
- )
232
+ if isinstance(dataset, DataFrame):
233
+ session = dataset._session
234
+ assert session is not None # keep mypy happy
235
+ # Validate that key package version in user workspace are supported in snowflake conda channel
236
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
237
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
238
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
239
+
240
+ # Specify input columns so column pruning will be enforced
241
+ selected_cols = self._get_active_columns()
242
+ if len(selected_cols) > 0:
243
+ dataset = dataset.select(selected_cols)
244
+
245
+ self._snowpark_cols = dataset.select(self.input_cols).columns
246
+
247
+ # If we are already in a stored procedure, no need to kick off another one.
248
+ if SNOWML_SPROC_ENV in os.environ:
249
+ statement_params = telemetry.get_function_usage_statement_params(
250
+ project=_PROJECT,
251
+ subproject=_SUBPROJECT,
252
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MissingIndicator.__class__.__name__),
253
+ api_calls=[Session.call],
254
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
255
+ )
256
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
257
+ pd_df.columns = dataset.columns
258
+ dataset = pd_df
259
+
260
+ model_trainer = ModelTrainerBuilder.build(
261
+ estimator=self._sklearn_object,
262
+ dataset=dataset,
263
+ input_cols=self.input_cols,
264
+ label_cols=self.label_cols,
265
+ sample_weight_col=self.sample_weight_col,
266
+ autogenerated=self._autogenerated,
267
+ subproject=_SUBPROJECT
268
+ )
269
+ self._sklearn_object = model_trainer.train()
248
270
  self._is_fitted = True
249
271
  self._get_model_signatures(dataset)
250
272
  return self
251
273
 
252
- def _fit_snowpark(self, dataset: DataFrame) -> None:
253
- session = dataset._session
254
- assert session is not None # keep mypy happy
255
- # Validate that key package version in user workspace are supported in snowflake conda channel
256
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
257
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
258
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
259
-
260
- # Specify input columns so column pruning will be enforced
261
- selected_cols = self._get_active_columns()
262
- if len(selected_cols) > 0:
263
- dataset = dataset.select(selected_cols)
264
-
265
- estimator = self._sklearn_object
266
- assert estimator is not None # Keep mypy happy
267
-
268
- self._snowpark_cols = dataset.select(self.input_cols).columns
269
-
270
- self._sklearn_object = self._handlers.fit_snowpark(
271
- dataset,
272
- session,
273
- estimator,
274
- ["snowflake-snowpark-python"] + self._get_dependencies(),
275
- self.input_cols,
276
- self.label_cols,
277
- self.sample_weight_col,
278
- )
279
-
280
274
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
281
275
  if self._drop_input_cols:
282
276
  return []
@@ -464,11 +458,6 @@ class MissingIndicator(BaseTransformer):
464
458
  subproject=_SUBPROJECT,
465
459
  custom_tags=dict([("autogen", True)]),
466
460
  )
467
- @telemetry.add_stmt_params_to_df(
468
- project=_PROJECT,
469
- subproject=_SUBPROJECT,
470
- custom_tags=dict([("autogen", True)]),
471
- )
472
461
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
473
462
  """Method not supported for this class.
474
463
 
@@ -520,11 +509,6 @@ class MissingIndicator(BaseTransformer):
520
509
  subproject=_SUBPROJECT,
521
510
  custom_tags=dict([("autogen", True)]),
522
511
  )
523
- @telemetry.add_stmt_params_to_df(
524
- project=_PROJECT,
525
- subproject=_SUBPROJECT,
526
- custom_tags=dict([("autogen", True)]),
527
- )
528
512
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
529
513
  """Generate missing values indicator for `X`
530
514
  For more details on this function, see [sklearn.impute.MissingIndicator.transform]
@@ -583,7 +567,8 @@ class MissingIndicator(BaseTransformer):
583
567
  if False:
584
568
  self.fit(dataset)
585
569
  assert self._sklearn_object is not None
586
- return self._sklearn_object.labels_
570
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
571
+ return labels
587
572
  else:
588
573
  raise NotImplementedError
589
574
 
@@ -619,6 +604,7 @@ class MissingIndicator(BaseTransformer):
619
604
  output_cols = []
620
605
 
621
606
  # Make sure column names are valid snowflake identifiers.
607
+ assert output_cols is not None # Make MyPy happy
622
608
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
623
609
 
624
610
  return rv
@@ -629,11 +615,6 @@ class MissingIndicator(BaseTransformer):
629
615
  subproject=_SUBPROJECT,
630
616
  custom_tags=dict([("autogen", True)]),
631
617
  )
632
- @telemetry.add_stmt_params_to_df(
633
- project=_PROJECT,
634
- subproject=_SUBPROJECT,
635
- custom_tags=dict([("autogen", True)]),
636
- )
637
618
  def predict_proba(
638
619
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
639
620
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -674,11 +655,6 @@ class MissingIndicator(BaseTransformer):
674
655
  subproject=_SUBPROJECT,
675
656
  custom_tags=dict([("autogen", True)]),
676
657
  )
677
- @telemetry.add_stmt_params_to_df(
678
- project=_PROJECT,
679
- subproject=_SUBPROJECT,
680
- custom_tags=dict([("autogen", True)]),
681
- )
682
658
  def predict_log_proba(
683
659
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
684
660
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -715,16 +691,6 @@ class MissingIndicator(BaseTransformer):
715
691
  return output_df
716
692
 
717
693
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
718
- @telemetry.send_api_usage_telemetry(
719
- project=_PROJECT,
720
- subproject=_SUBPROJECT,
721
- custom_tags=dict([("autogen", True)]),
722
- )
723
- @telemetry.add_stmt_params_to_df(
724
- project=_PROJECT,
725
- subproject=_SUBPROJECT,
726
- custom_tags=dict([("autogen", True)]),
727
- )
728
694
  def decision_function(
729
695
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
730
696
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -823,11 +789,6 @@ class MissingIndicator(BaseTransformer):
823
789
  subproject=_SUBPROJECT,
824
790
  custom_tags=dict([("autogen", True)]),
825
791
  )
826
- @telemetry.add_stmt_params_to_df(
827
- project=_PROJECT,
828
- subproject=_SUBPROJECT,
829
- custom_tags=dict([("autogen", True)]),
830
- )
831
792
  def kneighbors(
832
793
  self,
833
794
  dataset: Union[DataFrame, pd.DataFrame],
@@ -887,18 +848,28 @@ class MissingIndicator(BaseTransformer):
887
848
  # For classifier, the type of predict is the same as the type of label
888
849
  if self._sklearn_object._estimator_type == 'classifier':
889
850
  # label columns is the desired type for output
890
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
851
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
891
852
  # rename the output columns
892
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
853
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
854
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
855
+ ([] if self._drop_input_cols else inputs)
856
+ + outputs)
857
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
858
+ # For outlier models, returns -1 for outliers and 1 for inliers.
859
+ # Clusterer returns int64 cluster labels.
860
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
861
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
893
862
  self._model_signature_dict["predict"] = ModelSignature(inputs,
894
863
  ([] if self._drop_input_cols else inputs)
895
864
  + outputs)
865
+
896
866
  # For regressor, the type of predict is float64
897
867
  elif self._sklearn_object._estimator_type == 'regressor':
898
868
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
899
869
  self._model_signature_dict["predict"] = ModelSignature(inputs,
900
870
  ([] if self._drop_input_cols else inputs)
901
871
  + outputs)
872
+
902
873
  for prob_func in PROB_FUNCTIONS:
903
874
  if hasattr(self, prob_func):
904
875
  output_cols_prefix: str = f"{prob_func}_"
@@ -49,6 +49,7 @@ _SKLEARN_UNUSED_KEYWORDS = [
49
49
  _SNOWML_ONLY_KEYWORDS = [
50
50
  "input_cols",
51
51
  "output_cols",
52
+ "passthrough_cols",
52
53
  ] # snowml only keywords not present in sklearn
53
54
 
54
55
  # Added keywords mapped to the sklearn versions in which they were added. Update mappings in new
@@ -106,6 +107,11 @@ class SimpleImputer(base.BaseTransformer):
106
107
  output_cols: Optional[Union[str, List[str]]]
107
108
  A string or list of strings representing column names that will store the output of transform operation.
108
109
  The length of `output_cols` must equal the length of `input_cols`.
110
+ passthrough_cols: A string or a list of strings indicating column names to be excluded from any
111
+ operations (such as train, transform, or inference). These specified column(s)
112
+ will remain untouched throughout the process. This option is helpful in scenarios
113
+ requiring automatic input_cols inference, but need to avoid using specific
114
+ columns, like index columns, during training or inference.
109
115
  drop_input_cols: bool, default=False
110
116
  Remove input columns from output if set `True`.
111
117
 
@@ -130,6 +136,7 @@ class SimpleImputer(base.BaseTransformer):
130
136
  fill_value: Optional[Union[str, float]] = None,
131
137
  input_cols: Optional[Union[str, Iterable[str]]] = None,
132
138
  output_cols: Optional[Union[str, Iterable[str]]] = None,
139
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
133
140
  drop_input_cols: Optional[bool] = False,
134
141
  ) -> None:
135
142
  super().__init__(drop_input_cols=drop_input_cols)
@@ -158,6 +165,7 @@ class SimpleImputer(base.BaseTransformer):
158
165
 
159
166
  self.set_input_cols(input_cols)
160
167
  self.set_output_cols(output_cols)
168
+ self.set_passthrough_cols(passthrough_cols)
161
169
 
162
170
  def _reset(self) -> None:
163
171
  """
@@ -270,6 +278,7 @@ class SimpleImputer(base.BaseTransformer):
270
278
  state = STRATEGY_TO_STATE_DICT[self.strategy]
271
279
  assert state is not None
272
280
  dataset_copy = copy.copy(dataset)
281
+ dataset_copy = dataset_copy.select(self.input_cols)
273
282
  if not pd.isna(self.missing_values):
274
283
  # Replace `self.missing_values` with null to avoid including it when computing states.
275
284
  dataset_copy = dataset_copy.na.replace(self.missing_values, None)
@@ -300,7 +309,6 @@ class SimpleImputer(base.BaseTransformer):
300
309
  return self
301
310
 
302
311
  @telemetry.send_api_usage_telemetry(project=base.PROJECT, subproject=_SUBPROJECT)
303
- @telemetry.add_stmt_params_to_df(project=base.PROJECT, subproject=_SUBPROJECT)
304
312
  def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
305
313
  """
306
314
  Transform the input dataset by imputing the computed statistics in the input columns.