snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MissingIndicator(BaseTransformer):
|
57
58
|
r"""Binary indicators for missing values
|
58
59
|
For more details on this class, see [sklearn.impute.MissingIndicator]
|
@@ -60,6 +61,49 @@ class MissingIndicator(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
missing_values: int, float, str, np.nan or None, default=np.nan
|
64
108
|
The placeholder for the missing values. All occurrences of
|
65
109
|
`missing_values` will be imputed. For pandas' dataframes with
|
@@ -86,35 +130,6 @@ class MissingIndicator(BaseTransformer):
|
|
86
130
|
If `True`, :meth:`transform` will raise an error when there are
|
87
131
|
features with missing values that have no missing values in
|
88
132
|
:meth:`fit`. This is applicable only when `features='missing-only'`.
|
89
|
-
|
90
|
-
input_cols: Optional[Union[str, List[str]]]
|
91
|
-
A string or list of strings representing column names that contain features.
|
92
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
93
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
94
|
-
considered input columns.
|
95
|
-
|
96
|
-
label_cols: Optional[Union[str, List[str]]]
|
97
|
-
A string or list of strings representing column names that contain labels.
|
98
|
-
This is a required param for estimators, as there is no way to infer these
|
99
|
-
columns. If this parameter is not specified, then object is fitted without
|
100
|
-
labels (like a transformer).
|
101
|
-
|
102
|
-
output_cols: Optional[Union[str, List[str]]]
|
103
|
-
A string or list of strings representing column names that will store the
|
104
|
-
output of predict and transform operations. The length of output_cols must
|
105
|
-
match the expected number of output columns from the specific estimator or
|
106
|
-
transformer class used.
|
107
|
-
If this parameter is not specified, output column names are derived by
|
108
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
109
|
-
column names work for estimator's predict() method, but output_cols must
|
110
|
-
be set explicitly for transformers.
|
111
|
-
|
112
|
-
sample_weight_col: Optional[str]
|
113
|
-
A string representing the column name containing the sample weights.
|
114
|
-
This argument is only required when working with weighted datasets.
|
115
|
-
|
116
|
-
drop_input_cols: Optional[bool], default=False
|
117
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
118
133
|
"""
|
119
134
|
|
120
135
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -127,6 +142,7 @@ class MissingIndicator(BaseTransformer):
|
|
127
142
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
128
143
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
129
144
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
145
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
130
146
|
drop_input_cols: Optional[bool] = False,
|
131
147
|
sample_weight_col: Optional[str] = None,
|
132
148
|
) -> None:
|
@@ -135,9 +151,10 @@ class MissingIndicator(BaseTransformer):
|
|
135
151
|
self.set_input_cols(input_cols)
|
136
152
|
self.set_output_cols(output_cols)
|
137
153
|
self.set_label_cols(label_cols)
|
154
|
+
self.set_passthrough_cols(passthrough_cols)
|
138
155
|
self.set_drop_input_cols(drop_input_cols)
|
139
156
|
self.set_sample_weight_col(sample_weight_col)
|
140
|
-
deps = set(
|
157
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
141
158
|
|
142
159
|
self._deps = list(deps)
|
143
160
|
|
@@ -149,13 +166,14 @@ class MissingIndicator(BaseTransformer):
|
|
149
166
|
args=init_args,
|
150
167
|
klass=sklearn.impute.MissingIndicator
|
151
168
|
)
|
152
|
-
self._sklearn_object = sklearn.impute.MissingIndicator(
|
169
|
+
self._sklearn_object: Any = sklearn.impute.MissingIndicator(
|
153
170
|
**cleaned_up_init_args,
|
154
171
|
)
|
155
172
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
156
173
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
157
174
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
158
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MissingIndicator.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
175
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MissingIndicator.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
176
|
+
self._autogenerated = True
|
159
177
|
|
160
178
|
def _get_rand_id(self) -> str:
|
161
179
|
"""
|
@@ -166,24 +184,6 @@ class MissingIndicator(BaseTransformer):
|
|
166
184
|
"""
|
167
185
|
return str(uuid4()).replace("-", "_").upper()
|
168
186
|
|
169
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
170
|
-
"""
|
171
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
172
|
-
|
173
|
-
Args:
|
174
|
-
dataset: Input dataset.
|
175
|
-
"""
|
176
|
-
if not self.input_cols:
|
177
|
-
cols = [
|
178
|
-
c for c in dataset.columns
|
179
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
180
|
-
]
|
181
|
-
self.set_input_cols(input_cols=cols)
|
182
|
-
|
183
|
-
if not self.output_cols:
|
184
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
185
|
-
self.set_output_cols(output_cols=cols)
|
186
|
-
|
187
187
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MissingIndicator":
|
188
188
|
"""
|
189
189
|
Input columns setter.
|
@@ -229,54 +229,48 @@ class MissingIndicator(BaseTransformer):
|
|
229
229
|
self
|
230
230
|
"""
|
231
231
|
self._infer_input_output_cols(dataset)
|
232
|
-
if isinstance(dataset,
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
self.
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
232
|
+
if isinstance(dataset, DataFrame):
|
233
|
+
session = dataset._session
|
234
|
+
assert session is not None # keep mypy happy
|
235
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
236
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
237
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
238
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
239
|
+
|
240
|
+
# Specify input columns so column pruning will be enforced
|
241
|
+
selected_cols = self._get_active_columns()
|
242
|
+
if len(selected_cols) > 0:
|
243
|
+
dataset = dataset.select(selected_cols)
|
244
|
+
|
245
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
246
|
+
|
247
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
248
|
+
if SNOWML_SPROC_ENV in os.environ:
|
249
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
250
|
+
project=_PROJECT,
|
251
|
+
subproject=_SUBPROJECT,
|
252
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MissingIndicator.__class__.__name__),
|
253
|
+
api_calls=[Session.call],
|
254
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
255
|
+
)
|
256
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
257
|
+
pd_df.columns = dataset.columns
|
258
|
+
dataset = pd_df
|
259
|
+
|
260
|
+
model_trainer = ModelTrainerBuilder.build(
|
261
|
+
estimator=self._sklearn_object,
|
262
|
+
dataset=dataset,
|
263
|
+
input_cols=self.input_cols,
|
264
|
+
label_cols=self.label_cols,
|
265
|
+
sample_weight_col=self.sample_weight_col,
|
266
|
+
autogenerated=self._autogenerated,
|
267
|
+
subproject=_SUBPROJECT
|
268
|
+
)
|
269
|
+
self._sklearn_object = model_trainer.train()
|
248
270
|
self._is_fitted = True
|
249
271
|
self._get_model_signatures(dataset)
|
250
272
|
return self
|
251
273
|
|
252
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
253
|
-
session = dataset._session
|
254
|
-
assert session is not None # keep mypy happy
|
255
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
256
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
257
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
258
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
259
|
-
|
260
|
-
# Specify input columns so column pruning will be enforced
|
261
|
-
selected_cols = self._get_active_columns()
|
262
|
-
if len(selected_cols) > 0:
|
263
|
-
dataset = dataset.select(selected_cols)
|
264
|
-
|
265
|
-
estimator = self._sklearn_object
|
266
|
-
assert estimator is not None # Keep mypy happy
|
267
|
-
|
268
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
269
|
-
|
270
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
271
|
-
dataset,
|
272
|
-
session,
|
273
|
-
estimator,
|
274
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
275
|
-
self.input_cols,
|
276
|
-
self.label_cols,
|
277
|
-
self.sample_weight_col,
|
278
|
-
)
|
279
|
-
|
280
274
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
281
275
|
if self._drop_input_cols:
|
282
276
|
return []
|
@@ -464,11 +458,6 @@ class MissingIndicator(BaseTransformer):
|
|
464
458
|
subproject=_SUBPROJECT,
|
465
459
|
custom_tags=dict([("autogen", True)]),
|
466
460
|
)
|
467
|
-
@telemetry.add_stmt_params_to_df(
|
468
|
-
project=_PROJECT,
|
469
|
-
subproject=_SUBPROJECT,
|
470
|
-
custom_tags=dict([("autogen", True)]),
|
471
|
-
)
|
472
461
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
473
462
|
"""Method not supported for this class.
|
474
463
|
|
@@ -520,11 +509,6 @@ class MissingIndicator(BaseTransformer):
|
|
520
509
|
subproject=_SUBPROJECT,
|
521
510
|
custom_tags=dict([("autogen", True)]),
|
522
511
|
)
|
523
|
-
@telemetry.add_stmt_params_to_df(
|
524
|
-
project=_PROJECT,
|
525
|
-
subproject=_SUBPROJECT,
|
526
|
-
custom_tags=dict([("autogen", True)]),
|
527
|
-
)
|
528
512
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
529
513
|
"""Generate missing values indicator for `X`
|
530
514
|
For more details on this function, see [sklearn.impute.MissingIndicator.transform]
|
@@ -583,7 +567,8 @@ class MissingIndicator(BaseTransformer):
|
|
583
567
|
if False:
|
584
568
|
self.fit(dataset)
|
585
569
|
assert self._sklearn_object is not None
|
586
|
-
|
570
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
571
|
+
return labels
|
587
572
|
else:
|
588
573
|
raise NotImplementedError
|
589
574
|
|
@@ -619,6 +604,7 @@ class MissingIndicator(BaseTransformer):
|
|
619
604
|
output_cols = []
|
620
605
|
|
621
606
|
# Make sure column names are valid snowflake identifiers.
|
607
|
+
assert output_cols is not None # Make MyPy happy
|
622
608
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
623
609
|
|
624
610
|
return rv
|
@@ -629,11 +615,6 @@ class MissingIndicator(BaseTransformer):
|
|
629
615
|
subproject=_SUBPROJECT,
|
630
616
|
custom_tags=dict([("autogen", True)]),
|
631
617
|
)
|
632
|
-
@telemetry.add_stmt_params_to_df(
|
633
|
-
project=_PROJECT,
|
634
|
-
subproject=_SUBPROJECT,
|
635
|
-
custom_tags=dict([("autogen", True)]),
|
636
|
-
)
|
637
618
|
def predict_proba(
|
638
619
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
639
620
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -674,11 +655,6 @@ class MissingIndicator(BaseTransformer):
|
|
674
655
|
subproject=_SUBPROJECT,
|
675
656
|
custom_tags=dict([("autogen", True)]),
|
676
657
|
)
|
677
|
-
@telemetry.add_stmt_params_to_df(
|
678
|
-
project=_PROJECT,
|
679
|
-
subproject=_SUBPROJECT,
|
680
|
-
custom_tags=dict([("autogen", True)]),
|
681
|
-
)
|
682
658
|
def predict_log_proba(
|
683
659
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
684
660
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -715,16 +691,6 @@ class MissingIndicator(BaseTransformer):
|
|
715
691
|
return output_df
|
716
692
|
|
717
693
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
718
|
-
@telemetry.send_api_usage_telemetry(
|
719
|
-
project=_PROJECT,
|
720
|
-
subproject=_SUBPROJECT,
|
721
|
-
custom_tags=dict([("autogen", True)]),
|
722
|
-
)
|
723
|
-
@telemetry.add_stmt_params_to_df(
|
724
|
-
project=_PROJECT,
|
725
|
-
subproject=_SUBPROJECT,
|
726
|
-
custom_tags=dict([("autogen", True)]),
|
727
|
-
)
|
728
694
|
def decision_function(
|
729
695
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
730
696
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -823,11 +789,6 @@ class MissingIndicator(BaseTransformer):
|
|
823
789
|
subproject=_SUBPROJECT,
|
824
790
|
custom_tags=dict([("autogen", True)]),
|
825
791
|
)
|
826
|
-
@telemetry.add_stmt_params_to_df(
|
827
|
-
project=_PROJECT,
|
828
|
-
subproject=_SUBPROJECT,
|
829
|
-
custom_tags=dict([("autogen", True)]),
|
830
|
-
)
|
831
792
|
def kneighbors(
|
832
793
|
self,
|
833
794
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -887,18 +848,28 @@ class MissingIndicator(BaseTransformer):
|
|
887
848
|
# For classifier, the type of predict is the same as the type of label
|
888
849
|
if self._sklearn_object._estimator_type == 'classifier':
|
889
850
|
# label columns is the desired type for output
|
890
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
851
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
891
852
|
# rename the output columns
|
892
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
853
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
854
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
855
|
+
([] if self._drop_input_cols else inputs)
|
856
|
+
+ outputs)
|
857
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
858
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
859
|
+
# Clusterer returns int64 cluster labels.
|
860
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
861
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
893
862
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
894
863
|
([] if self._drop_input_cols else inputs)
|
895
864
|
+ outputs)
|
865
|
+
|
896
866
|
# For regressor, the type of predict is float64
|
897
867
|
elif self._sklearn_object._estimator_type == 'regressor':
|
898
868
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
899
869
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
900
870
|
([] if self._drop_input_cols else inputs)
|
901
871
|
+ outputs)
|
872
|
+
|
902
873
|
for prob_func in PROB_FUNCTIONS:
|
903
874
|
if hasattr(self, prob_func):
|
904
875
|
output_cols_prefix: str = f"{prob_func}_"
|
@@ -49,6 +49,7 @@ _SKLEARN_UNUSED_KEYWORDS = [
|
|
49
49
|
_SNOWML_ONLY_KEYWORDS = [
|
50
50
|
"input_cols",
|
51
51
|
"output_cols",
|
52
|
+
"passthrough_cols",
|
52
53
|
] # snowml only keywords not present in sklearn
|
53
54
|
|
54
55
|
# Added keywords mapped to the sklearn versions in which they were added. Update mappings in new
|
@@ -106,6 +107,11 @@ class SimpleImputer(base.BaseTransformer):
|
|
106
107
|
output_cols: Optional[Union[str, List[str]]]
|
107
108
|
A string or list of strings representing column names that will store the output of transform operation.
|
108
109
|
The length of `output_cols` must equal the length of `input_cols`.
|
110
|
+
passthrough_cols: A string or a list of strings indicating column names to be excluded from any
|
111
|
+
operations (such as train, transform, or inference). These specified column(s)
|
112
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
113
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
114
|
+
columns, like index columns, during training or inference.
|
109
115
|
drop_input_cols: bool, default=False
|
110
116
|
Remove input columns from output if set `True`.
|
111
117
|
|
@@ -130,6 +136,7 @@ class SimpleImputer(base.BaseTransformer):
|
|
130
136
|
fill_value: Optional[Union[str, float]] = None,
|
131
137
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
132
138
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
139
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
133
140
|
drop_input_cols: Optional[bool] = False,
|
134
141
|
) -> None:
|
135
142
|
super().__init__(drop_input_cols=drop_input_cols)
|
@@ -158,6 +165,7 @@ class SimpleImputer(base.BaseTransformer):
|
|
158
165
|
|
159
166
|
self.set_input_cols(input_cols)
|
160
167
|
self.set_output_cols(output_cols)
|
168
|
+
self.set_passthrough_cols(passthrough_cols)
|
161
169
|
|
162
170
|
def _reset(self) -> None:
|
163
171
|
"""
|
@@ -270,6 +278,7 @@ class SimpleImputer(base.BaseTransformer):
|
|
270
278
|
state = STRATEGY_TO_STATE_DICT[self.strategy]
|
271
279
|
assert state is not None
|
272
280
|
dataset_copy = copy.copy(dataset)
|
281
|
+
dataset_copy = dataset_copy.select(self.input_cols)
|
273
282
|
if not pd.isna(self.missing_values):
|
274
283
|
# Replace `self.missing_values` with null to avoid including it when computing states.
|
275
284
|
dataset_copy = dataset_copy.na.replace(self.missing_values, None)
|
@@ -300,7 +309,6 @@ class SimpleImputer(base.BaseTransformer):
|
|
300
309
|
return self
|
301
310
|
|
302
311
|
@telemetry.send_api_usage_telemetry(project=base.PROJECT, subproject=_SUBPROJECT)
|
303
|
-
@telemetry.add_stmt_params_to_df(project=base.PROJECT, subproject=_SUBPROJECT)
|
304
312
|
def transform(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> Union[snowpark.DataFrame, pd.DataFrame]:
|
305
313
|
"""
|
306
314
|
Transform the input dataset by imputing the computed statistics in the input columns.
|