snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.mixture".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GaussianMixture(BaseTransformer):
|
57
58
|
r"""Gaussian Mixture
|
58
59
|
For more details on this class, see [sklearn.mixture.GaussianMixture]
|
@@ -60,6 +61,49 @@ class GaussianMixture(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=1
|
64
108
|
The number of mixture components.
|
65
109
|
|
@@ -140,35 +184,6 @@ class GaussianMixture(BaseTransformer):
|
|
140
184
|
|
141
185
|
verbose_interval: int, default=10
|
142
186
|
Number of iteration done before the next print.
|
143
|
-
|
144
|
-
input_cols: Optional[Union[str, List[str]]]
|
145
|
-
A string or list of strings representing column names that contain features.
|
146
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
147
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
148
|
-
considered input columns.
|
149
|
-
|
150
|
-
label_cols: Optional[Union[str, List[str]]]
|
151
|
-
A string or list of strings representing column names that contain labels.
|
152
|
-
This is a required param for estimators, as there is no way to infer these
|
153
|
-
columns. If this parameter is not specified, then object is fitted without
|
154
|
-
labels (like a transformer).
|
155
|
-
|
156
|
-
output_cols: Optional[Union[str, List[str]]]
|
157
|
-
A string or list of strings representing column names that will store the
|
158
|
-
output of predict and transform operations. The length of output_cols must
|
159
|
-
match the expected number of output columns from the specific estimator or
|
160
|
-
transformer class used.
|
161
|
-
If this parameter is not specified, output column names are derived by
|
162
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
163
|
-
column names work for estimator's predict() method, but output_cols must
|
164
|
-
be set explicitly for transformers.
|
165
|
-
|
166
|
-
sample_weight_col: Optional[str]
|
167
|
-
A string representing the column name containing the sample weights.
|
168
|
-
This argument is only required when working with weighted datasets.
|
169
|
-
|
170
|
-
drop_input_cols: Optional[bool], default=False
|
171
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
172
187
|
"""
|
173
188
|
|
174
189
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -191,6 +206,7 @@ class GaussianMixture(BaseTransformer):
|
|
191
206
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
192
207
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
193
208
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
209
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
194
210
|
drop_input_cols: Optional[bool] = False,
|
195
211
|
sample_weight_col: Optional[str] = None,
|
196
212
|
) -> None:
|
@@ -199,9 +215,10 @@ class GaussianMixture(BaseTransformer):
|
|
199
215
|
self.set_input_cols(input_cols)
|
200
216
|
self.set_output_cols(output_cols)
|
201
217
|
self.set_label_cols(label_cols)
|
218
|
+
self.set_passthrough_cols(passthrough_cols)
|
202
219
|
self.set_drop_input_cols(drop_input_cols)
|
203
220
|
self.set_sample_weight_col(sample_weight_col)
|
204
|
-
deps = set(
|
221
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
205
222
|
|
206
223
|
self._deps = list(deps)
|
207
224
|
|
@@ -223,13 +240,14 @@ class GaussianMixture(BaseTransformer):
|
|
223
240
|
args=init_args,
|
224
241
|
klass=sklearn.mixture.GaussianMixture
|
225
242
|
)
|
226
|
-
self._sklearn_object = sklearn.mixture.GaussianMixture(
|
243
|
+
self._sklearn_object: Any = sklearn.mixture.GaussianMixture(
|
227
244
|
**cleaned_up_init_args,
|
228
245
|
)
|
229
246
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
230
247
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
231
248
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
232
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
249
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
250
|
+
self._autogenerated = True
|
233
251
|
|
234
252
|
def _get_rand_id(self) -> str:
|
235
253
|
"""
|
@@ -240,24 +258,6 @@ class GaussianMixture(BaseTransformer):
|
|
240
258
|
"""
|
241
259
|
return str(uuid4()).replace("-", "_").upper()
|
242
260
|
|
243
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
244
|
-
"""
|
245
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
246
|
-
|
247
|
-
Args:
|
248
|
-
dataset: Input dataset.
|
249
|
-
"""
|
250
|
-
if not self.input_cols:
|
251
|
-
cols = [
|
252
|
-
c for c in dataset.columns
|
253
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
254
|
-
]
|
255
|
-
self.set_input_cols(input_cols=cols)
|
256
|
-
|
257
|
-
if not self.output_cols:
|
258
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
259
|
-
self.set_output_cols(output_cols=cols)
|
260
|
-
|
261
261
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GaussianMixture":
|
262
262
|
"""
|
263
263
|
Input columns setter.
|
@@ -303,54 +303,48 @@ class GaussianMixture(BaseTransformer):
|
|
303
303
|
self
|
304
304
|
"""
|
305
305
|
self._infer_input_output_cols(dataset)
|
306
|
-
if isinstance(dataset,
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
self.
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
306
|
+
if isinstance(dataset, DataFrame):
|
307
|
+
session = dataset._session
|
308
|
+
assert session is not None # keep mypy happy
|
309
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
310
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
311
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
312
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
313
|
+
|
314
|
+
# Specify input columns so column pruning will be enforced
|
315
|
+
selected_cols = self._get_active_columns()
|
316
|
+
if len(selected_cols) > 0:
|
317
|
+
dataset = dataset.select(selected_cols)
|
318
|
+
|
319
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
320
|
+
|
321
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
322
|
+
if SNOWML_SPROC_ENV in os.environ:
|
323
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
324
|
+
project=_PROJECT,
|
325
|
+
subproject=_SUBPROJECT,
|
326
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianMixture.__class__.__name__),
|
327
|
+
api_calls=[Session.call],
|
328
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
329
|
+
)
|
330
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
331
|
+
pd_df.columns = dataset.columns
|
332
|
+
dataset = pd_df
|
333
|
+
|
334
|
+
model_trainer = ModelTrainerBuilder.build(
|
335
|
+
estimator=self._sklearn_object,
|
336
|
+
dataset=dataset,
|
337
|
+
input_cols=self.input_cols,
|
338
|
+
label_cols=self.label_cols,
|
339
|
+
sample_weight_col=self.sample_weight_col,
|
340
|
+
autogenerated=self._autogenerated,
|
341
|
+
subproject=_SUBPROJECT
|
342
|
+
)
|
343
|
+
self._sklearn_object = model_trainer.train()
|
322
344
|
self._is_fitted = True
|
323
345
|
self._get_model_signatures(dataset)
|
324
346
|
return self
|
325
347
|
|
326
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
327
|
-
session = dataset._session
|
328
|
-
assert session is not None # keep mypy happy
|
329
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
330
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
331
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
332
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
333
|
-
|
334
|
-
# Specify input columns so column pruning will be enforced
|
335
|
-
selected_cols = self._get_active_columns()
|
336
|
-
if len(selected_cols) > 0:
|
337
|
-
dataset = dataset.select(selected_cols)
|
338
|
-
|
339
|
-
estimator = self._sklearn_object
|
340
|
-
assert estimator is not None # Keep mypy happy
|
341
|
-
|
342
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
343
|
-
|
344
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
345
|
-
dataset,
|
346
|
-
session,
|
347
|
-
estimator,
|
348
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
349
|
-
self.input_cols,
|
350
|
-
self.label_cols,
|
351
|
-
self.sample_weight_col,
|
352
|
-
)
|
353
|
-
|
354
348
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
355
349
|
if self._drop_input_cols:
|
356
350
|
return []
|
@@ -538,11 +532,6 @@ class GaussianMixture(BaseTransformer):
|
|
538
532
|
subproject=_SUBPROJECT,
|
539
533
|
custom_tags=dict([("autogen", True)]),
|
540
534
|
)
|
541
|
-
@telemetry.add_stmt_params_to_df(
|
542
|
-
project=_PROJECT,
|
543
|
-
subproject=_SUBPROJECT,
|
544
|
-
custom_tags=dict([("autogen", True)]),
|
545
|
-
)
|
546
535
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
547
536
|
"""Predict the labels for the data samples in X using trained model
|
548
537
|
For more details on this function, see [sklearn.mixture.GaussianMixture.predict]
|
@@ -596,11 +585,6 @@ class GaussianMixture(BaseTransformer):
|
|
596
585
|
subproject=_SUBPROJECT,
|
597
586
|
custom_tags=dict([("autogen", True)]),
|
598
587
|
)
|
599
|
-
@telemetry.add_stmt_params_to_df(
|
600
|
-
project=_PROJECT,
|
601
|
-
subproject=_SUBPROJECT,
|
602
|
-
custom_tags=dict([("autogen", True)]),
|
603
|
-
)
|
604
588
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
605
589
|
"""Method not supported for this class.
|
606
590
|
|
@@ -659,7 +643,8 @@ class GaussianMixture(BaseTransformer):
|
|
659
643
|
if False:
|
660
644
|
self.fit(dataset)
|
661
645
|
assert self._sklearn_object is not None
|
662
|
-
|
646
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
647
|
+
return labels
|
663
648
|
else:
|
664
649
|
raise NotImplementedError
|
665
650
|
|
@@ -695,6 +680,7 @@ class GaussianMixture(BaseTransformer):
|
|
695
680
|
output_cols = []
|
696
681
|
|
697
682
|
# Make sure column names are valid snowflake identifiers.
|
683
|
+
assert output_cols is not None # Make MyPy happy
|
698
684
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
699
685
|
|
700
686
|
return rv
|
@@ -705,11 +691,6 @@ class GaussianMixture(BaseTransformer):
|
|
705
691
|
subproject=_SUBPROJECT,
|
706
692
|
custom_tags=dict([("autogen", True)]),
|
707
693
|
)
|
708
|
-
@telemetry.add_stmt_params_to_df(
|
709
|
-
project=_PROJECT,
|
710
|
-
subproject=_SUBPROJECT,
|
711
|
-
custom_tags=dict([("autogen", True)]),
|
712
|
-
)
|
713
694
|
def predict_proba(
|
714
695
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
715
696
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -752,11 +733,6 @@ class GaussianMixture(BaseTransformer):
|
|
752
733
|
subproject=_SUBPROJECT,
|
753
734
|
custom_tags=dict([("autogen", True)]),
|
754
735
|
)
|
755
|
-
@telemetry.add_stmt_params_to_df(
|
756
|
-
project=_PROJECT,
|
757
|
-
subproject=_SUBPROJECT,
|
758
|
-
custom_tags=dict([("autogen", True)]),
|
759
|
-
)
|
760
736
|
def predict_log_proba(
|
761
737
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
762
738
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -795,16 +771,6 @@ class GaussianMixture(BaseTransformer):
|
|
795
771
|
return output_df
|
796
772
|
|
797
773
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
798
|
-
@telemetry.send_api_usage_telemetry(
|
799
|
-
project=_PROJECT,
|
800
|
-
subproject=_SUBPROJECT,
|
801
|
-
custom_tags=dict([("autogen", True)]),
|
802
|
-
)
|
803
|
-
@telemetry.add_stmt_params_to_df(
|
804
|
-
project=_PROJECT,
|
805
|
-
subproject=_SUBPROJECT,
|
806
|
-
custom_tags=dict([("autogen", True)]),
|
807
|
-
)
|
808
774
|
def decision_function(
|
809
775
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
810
776
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -905,11 +871,6 @@ class GaussianMixture(BaseTransformer):
|
|
905
871
|
subproject=_SUBPROJECT,
|
906
872
|
custom_tags=dict([("autogen", True)]),
|
907
873
|
)
|
908
|
-
@telemetry.add_stmt_params_to_df(
|
909
|
-
project=_PROJECT,
|
910
|
-
subproject=_SUBPROJECT,
|
911
|
-
custom_tags=dict([("autogen", True)]),
|
912
|
-
)
|
913
874
|
def kneighbors(
|
914
875
|
self,
|
915
876
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -969,18 +930,28 @@ class GaussianMixture(BaseTransformer):
|
|
969
930
|
# For classifier, the type of predict is the same as the type of label
|
970
931
|
if self._sklearn_object._estimator_type == 'classifier':
|
971
932
|
# label columns is the desired type for output
|
972
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
933
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
973
934
|
# rename the output columns
|
974
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
935
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
936
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
937
|
+
([] if self._drop_input_cols else inputs)
|
938
|
+
+ outputs)
|
939
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
940
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
941
|
+
# Clusterer returns int64 cluster labels.
|
942
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
943
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
975
944
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
976
945
|
([] if self._drop_input_cols else inputs)
|
977
946
|
+ outputs)
|
947
|
+
|
978
948
|
# For regressor, the type of predict is float64
|
979
949
|
elif self._sklearn_object._estimator_type == 'regressor':
|
980
950
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
981
951
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
982
952
|
([] if self._drop_input_cols else inputs)
|
983
953
|
+ outputs)
|
954
|
+
|
984
955
|
for prob_func in PROB_FUNCTIONS:
|
985
956
|
if hasattr(self, prob_func):
|
986
957
|
output_cols_prefix: str = f"{prob_func}_"
|