snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.mixture".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GaussianMixture(BaseTransformer):
57
58
  r"""Gaussian Mixture
58
59
  For more details on this class, see [sklearn.mixture.GaussianMixture]
@@ -60,6 +61,49 @@ class GaussianMixture(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=1
64
108
  The number of mixture components.
65
109
 
@@ -140,35 +184,6 @@ class GaussianMixture(BaseTransformer):
140
184
 
141
185
  verbose_interval: int, default=10
142
186
  Number of iteration done before the next print.
143
-
144
- input_cols: Optional[Union[str, List[str]]]
145
- A string or list of strings representing column names that contain features.
146
- If this parameter is not specified, all columns in the input DataFrame except
147
- the columns specified by label_cols and sample_weight_col parameters are
148
- considered input columns.
149
-
150
- label_cols: Optional[Union[str, List[str]]]
151
- A string or list of strings representing column names that contain labels.
152
- This is a required param for estimators, as there is no way to infer these
153
- columns. If this parameter is not specified, then object is fitted without
154
- labels (like a transformer).
155
-
156
- output_cols: Optional[Union[str, List[str]]]
157
- A string or list of strings representing column names that will store the
158
- output of predict and transform operations. The length of output_cols must
159
- match the expected number of output columns from the specific estimator or
160
- transformer class used.
161
- If this parameter is not specified, output column names are derived by
162
- adding an OUTPUT_ prefix to the label column names. These inferred output
163
- column names work for estimator's predict() method, but output_cols must
164
- be set explicitly for transformers.
165
-
166
- sample_weight_col: Optional[str]
167
- A string representing the column name containing the sample weights.
168
- This argument is only required when working with weighted datasets.
169
-
170
- drop_input_cols: Optional[bool], default=False
171
- If set, the response of predict(), transform() methods will not contain input columns.
172
187
  """
173
188
 
174
189
  def __init__( # type: ignore[no-untyped-def]
@@ -191,6 +206,7 @@ class GaussianMixture(BaseTransformer):
191
206
  input_cols: Optional[Union[str, Iterable[str]]] = None,
192
207
  output_cols: Optional[Union[str, Iterable[str]]] = None,
193
208
  label_cols: Optional[Union[str, Iterable[str]]] = None,
209
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
194
210
  drop_input_cols: Optional[bool] = False,
195
211
  sample_weight_col: Optional[str] = None,
196
212
  ) -> None:
@@ -199,9 +215,10 @@ class GaussianMixture(BaseTransformer):
199
215
  self.set_input_cols(input_cols)
200
216
  self.set_output_cols(output_cols)
201
217
  self.set_label_cols(label_cols)
218
+ self.set_passthrough_cols(passthrough_cols)
202
219
  self.set_drop_input_cols(drop_input_cols)
203
220
  self.set_sample_weight_col(sample_weight_col)
204
- deps = set(SklearnWrapperProvider().dependencies)
221
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
205
222
 
206
223
  self._deps = list(deps)
207
224
 
@@ -223,13 +240,14 @@ class GaussianMixture(BaseTransformer):
223
240
  args=init_args,
224
241
  klass=sklearn.mixture.GaussianMixture
225
242
  )
226
- self._sklearn_object = sklearn.mixture.GaussianMixture(
243
+ self._sklearn_object: Any = sklearn.mixture.GaussianMixture(
227
244
  **cleaned_up_init_args,
228
245
  )
229
246
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
230
247
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
231
248
  self._snowpark_cols: Optional[List[str]] = self.input_cols
232
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
249
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
250
+ self._autogenerated = True
233
251
 
234
252
  def _get_rand_id(self) -> str:
235
253
  """
@@ -240,24 +258,6 @@ class GaussianMixture(BaseTransformer):
240
258
  """
241
259
  return str(uuid4()).replace("-", "_").upper()
242
260
 
243
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
244
- """
245
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
246
-
247
- Args:
248
- dataset: Input dataset.
249
- """
250
- if not self.input_cols:
251
- cols = [
252
- c for c in dataset.columns
253
- if c not in self.get_label_cols() and c != self.sample_weight_col
254
- ]
255
- self.set_input_cols(input_cols=cols)
256
-
257
- if not self.output_cols:
258
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
259
- self.set_output_cols(output_cols=cols)
260
-
261
261
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GaussianMixture":
262
262
  """
263
263
  Input columns setter.
@@ -303,54 +303,48 @@ class GaussianMixture(BaseTransformer):
303
303
  self
304
304
  """
305
305
  self._infer_input_output_cols(dataset)
306
- if isinstance(dataset, pd.DataFrame):
307
- assert self._sklearn_object is not None # keep mypy happy
308
- self._sklearn_object = self._handlers.fit_pandas(
309
- dataset,
310
- self._sklearn_object,
311
- self.input_cols,
312
- self.label_cols,
313
- self.sample_weight_col
314
- )
315
- elif isinstance(dataset, DataFrame):
316
- self._fit_snowpark(dataset)
317
- else:
318
- raise TypeError(
319
- f"Unexpected dataset type: {type(dataset)}."
320
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
321
- )
306
+ if isinstance(dataset, DataFrame):
307
+ session = dataset._session
308
+ assert session is not None # keep mypy happy
309
+ # Validate that key package version in user workspace are supported in snowflake conda channel
310
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
311
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
312
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
313
+
314
+ # Specify input columns so column pruning will be enforced
315
+ selected_cols = self._get_active_columns()
316
+ if len(selected_cols) > 0:
317
+ dataset = dataset.select(selected_cols)
318
+
319
+ self._snowpark_cols = dataset.select(self.input_cols).columns
320
+
321
+ # If we are already in a stored procedure, no need to kick off another one.
322
+ if SNOWML_SPROC_ENV in os.environ:
323
+ statement_params = telemetry.get_function_usage_statement_params(
324
+ project=_PROJECT,
325
+ subproject=_SUBPROJECT,
326
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianMixture.__class__.__name__),
327
+ api_calls=[Session.call],
328
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
329
+ )
330
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
331
+ pd_df.columns = dataset.columns
332
+ dataset = pd_df
333
+
334
+ model_trainer = ModelTrainerBuilder.build(
335
+ estimator=self._sklearn_object,
336
+ dataset=dataset,
337
+ input_cols=self.input_cols,
338
+ label_cols=self.label_cols,
339
+ sample_weight_col=self.sample_weight_col,
340
+ autogenerated=self._autogenerated,
341
+ subproject=_SUBPROJECT
342
+ )
343
+ self._sklearn_object = model_trainer.train()
322
344
  self._is_fitted = True
323
345
  self._get_model_signatures(dataset)
324
346
  return self
325
347
 
326
- def _fit_snowpark(self, dataset: DataFrame) -> None:
327
- session = dataset._session
328
- assert session is not None # keep mypy happy
329
- # Validate that key package version in user workspace are supported in snowflake conda channel
330
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
331
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
332
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
333
-
334
- # Specify input columns so column pruning will be enforced
335
- selected_cols = self._get_active_columns()
336
- if len(selected_cols) > 0:
337
- dataset = dataset.select(selected_cols)
338
-
339
- estimator = self._sklearn_object
340
- assert estimator is not None # Keep mypy happy
341
-
342
- self._snowpark_cols = dataset.select(self.input_cols).columns
343
-
344
- self._sklearn_object = self._handlers.fit_snowpark(
345
- dataset,
346
- session,
347
- estimator,
348
- ["snowflake-snowpark-python"] + self._get_dependencies(),
349
- self.input_cols,
350
- self.label_cols,
351
- self.sample_weight_col,
352
- )
353
-
354
348
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
355
349
  if self._drop_input_cols:
356
350
  return []
@@ -538,11 +532,6 @@ class GaussianMixture(BaseTransformer):
538
532
  subproject=_SUBPROJECT,
539
533
  custom_tags=dict([("autogen", True)]),
540
534
  )
541
- @telemetry.add_stmt_params_to_df(
542
- project=_PROJECT,
543
- subproject=_SUBPROJECT,
544
- custom_tags=dict([("autogen", True)]),
545
- )
546
535
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
547
536
  """Predict the labels for the data samples in X using trained model
548
537
  For more details on this function, see [sklearn.mixture.GaussianMixture.predict]
@@ -596,11 +585,6 @@ class GaussianMixture(BaseTransformer):
596
585
  subproject=_SUBPROJECT,
597
586
  custom_tags=dict([("autogen", True)]),
598
587
  )
599
- @telemetry.add_stmt_params_to_df(
600
- project=_PROJECT,
601
- subproject=_SUBPROJECT,
602
- custom_tags=dict([("autogen", True)]),
603
- )
604
588
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
605
589
  """Method not supported for this class.
606
590
 
@@ -659,7 +643,8 @@ class GaussianMixture(BaseTransformer):
659
643
  if False:
660
644
  self.fit(dataset)
661
645
  assert self._sklearn_object is not None
662
- return self._sklearn_object.labels_
646
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
647
+ return labels
663
648
  else:
664
649
  raise NotImplementedError
665
650
 
@@ -695,6 +680,7 @@ class GaussianMixture(BaseTransformer):
695
680
  output_cols = []
696
681
 
697
682
  # Make sure column names are valid snowflake identifiers.
683
+ assert output_cols is not None # Make MyPy happy
698
684
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
699
685
 
700
686
  return rv
@@ -705,11 +691,6 @@ class GaussianMixture(BaseTransformer):
705
691
  subproject=_SUBPROJECT,
706
692
  custom_tags=dict([("autogen", True)]),
707
693
  )
708
- @telemetry.add_stmt_params_to_df(
709
- project=_PROJECT,
710
- subproject=_SUBPROJECT,
711
- custom_tags=dict([("autogen", True)]),
712
- )
713
694
  def predict_proba(
714
695
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
715
696
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -752,11 +733,6 @@ class GaussianMixture(BaseTransformer):
752
733
  subproject=_SUBPROJECT,
753
734
  custom_tags=dict([("autogen", True)]),
754
735
  )
755
- @telemetry.add_stmt_params_to_df(
756
- project=_PROJECT,
757
- subproject=_SUBPROJECT,
758
- custom_tags=dict([("autogen", True)]),
759
- )
760
736
  def predict_log_proba(
761
737
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
762
738
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -795,16 +771,6 @@ class GaussianMixture(BaseTransformer):
795
771
  return output_df
796
772
 
797
773
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
798
- @telemetry.send_api_usage_telemetry(
799
- project=_PROJECT,
800
- subproject=_SUBPROJECT,
801
- custom_tags=dict([("autogen", True)]),
802
- )
803
- @telemetry.add_stmt_params_to_df(
804
- project=_PROJECT,
805
- subproject=_SUBPROJECT,
806
- custom_tags=dict([("autogen", True)]),
807
- )
808
774
  def decision_function(
809
775
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
810
776
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -905,11 +871,6 @@ class GaussianMixture(BaseTransformer):
905
871
  subproject=_SUBPROJECT,
906
872
  custom_tags=dict([("autogen", True)]),
907
873
  )
908
- @telemetry.add_stmt_params_to_df(
909
- project=_PROJECT,
910
- subproject=_SUBPROJECT,
911
- custom_tags=dict([("autogen", True)]),
912
- )
913
874
  def kneighbors(
914
875
  self,
915
876
  dataset: Union[DataFrame, pd.DataFrame],
@@ -969,18 +930,28 @@ class GaussianMixture(BaseTransformer):
969
930
  # For classifier, the type of predict is the same as the type of label
970
931
  if self._sklearn_object._estimator_type == 'classifier':
971
932
  # label columns is the desired type for output
972
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
933
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
973
934
  # rename the output columns
974
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
935
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
936
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
937
+ ([] if self._drop_input_cols else inputs)
938
+ + outputs)
939
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
940
+ # For outlier models, returns -1 for outliers and 1 for inliers.
941
+ # Clusterer returns int64 cluster labels.
942
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
943
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
975
944
  self._model_signature_dict["predict"] = ModelSignature(inputs,
976
945
  ([] if self._drop_input_cols else inputs)
977
946
  + outputs)
947
+
978
948
  # For regressor, the type of predict is float64
979
949
  elif self._sklearn_object._estimator_type == 'regressor':
980
950
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
981
951
  self._model_signature_dict["predict"] = ModelSignature(inputs,
982
952
  ([] if self._drop_input_cols else inputs)
983
953
  + outputs)
954
+
984
955
  for prob_func in PROB_FUNCTIONS:
985
956
  if hasattr(self, prob_func):
986
957
  output_cols_prefix: str = f"{prob_func}_"