snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class XGBClassifier(BaseTransformer):
|
56
57
|
r"""Implementation of the scikit-learn API for XGBoost classification
|
57
58
|
For more details on this class, see [xgboost.XGBClassifier]
|
@@ -60,7 +61,51 @@ class XGBClassifier(BaseTransformer):
|
|
60
61
|
Parameters
|
61
62
|
----------
|
62
63
|
|
63
|
-
|
64
|
+
input_cols: Optional[Union[str, List[str]]]
|
65
|
+
A string or list of strings representing column names that contain features.
|
66
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
67
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
71
|
+
label_cols: Optional[Union[str, List[str]]]
|
72
|
+
A string or list of strings representing column names that contain labels.
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
108
|
+
n_estimators: int
|
64
109
|
Number of boosting rounds.
|
65
110
|
|
66
111
|
max_depth: Optional[int]
|
@@ -267,35 +312,6 @@ class XGBClassifier(BaseTransformer):
|
|
267
312
|
The value of the gradient for each sample point.
|
268
313
|
hess: array_like of shape [n_samples]
|
269
314
|
The value of the second derivative for each sample point
|
270
|
-
|
271
|
-
input_cols: Optional[Union[str, List[str]]]
|
272
|
-
A string or list of strings representing column names that contain features.
|
273
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
274
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
275
|
-
considered input columns.
|
276
|
-
|
277
|
-
label_cols: Optional[Union[str, List[str]]]
|
278
|
-
A string or list of strings representing column names that contain labels.
|
279
|
-
This is a required param for estimators, as there is no way to infer these
|
280
|
-
columns. If this parameter is not specified, then object is fitted without
|
281
|
-
labels (like a transformer).
|
282
|
-
|
283
|
-
output_cols: Optional[Union[str, List[str]]]
|
284
|
-
A string or list of strings representing column names that will store the
|
285
|
-
output of predict and transform operations. The length of output_cols must
|
286
|
-
match the expected number of output columns from the specific estimator or
|
287
|
-
transformer class used.
|
288
|
-
If this parameter is not specified, output column names are derived by
|
289
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
290
|
-
column names work for estimator's predict() method, but output_cols must
|
291
|
-
be set explicitly for transformers.
|
292
|
-
|
293
|
-
sample_weight_col: Optional[str]
|
294
|
-
A string representing the column name containing the sample weights.
|
295
|
-
This argument is only required when working with weighted datasets.
|
296
|
-
|
297
|
-
drop_input_cols: Optional[bool], default=False
|
298
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
299
315
|
"""
|
300
316
|
|
301
317
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -306,6 +322,7 @@ class XGBClassifier(BaseTransformer):
|
|
306
322
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
307
323
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
308
324
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
325
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
309
326
|
drop_input_cols: Optional[bool] = False,
|
310
327
|
sample_weight_col: Optional[str] = None,
|
311
328
|
**kwargs,
|
@@ -315,9 +332,10 @@ class XGBClassifier(BaseTransformer):
|
|
315
332
|
self.set_input_cols(input_cols)
|
316
333
|
self.set_output_cols(output_cols)
|
317
334
|
self.set_label_cols(label_cols)
|
335
|
+
self.set_passthrough_cols(passthrough_cols)
|
318
336
|
self.set_drop_input_cols(drop_input_cols)
|
319
337
|
self.set_sample_weight_col(sample_weight_col)
|
320
|
-
deps = set(
|
338
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
|
321
339
|
|
322
340
|
self._deps = list(deps)
|
323
341
|
|
@@ -327,14 +345,15 @@ class XGBClassifier(BaseTransformer):
|
|
327
345
|
args=init_args,
|
328
346
|
klass=xgboost.XGBClassifier
|
329
347
|
)
|
330
|
-
self._sklearn_object = xgboost.XGBClassifier(
|
348
|
+
self._sklearn_object: Any = xgboost.XGBClassifier(
|
331
349
|
**cleaned_up_init_args,
|
332
350
|
**kwargs,
|
333
351
|
)
|
334
352
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
335
353
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
336
354
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
337
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
355
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
356
|
+
self._autogenerated = True
|
338
357
|
|
339
358
|
def _get_rand_id(self) -> str:
|
340
359
|
"""
|
@@ -345,24 +364,6 @@ class XGBClassifier(BaseTransformer):
|
|
345
364
|
"""
|
346
365
|
return str(uuid4()).replace("-", "_").upper()
|
347
366
|
|
348
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
349
|
-
"""
|
350
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
351
|
-
|
352
|
-
Args:
|
353
|
-
dataset: Input dataset.
|
354
|
-
"""
|
355
|
-
if not self.input_cols:
|
356
|
-
cols = [
|
357
|
-
c for c in dataset.columns
|
358
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
359
|
-
]
|
360
|
-
self.set_input_cols(input_cols=cols)
|
361
|
-
|
362
|
-
if not self.output_cols:
|
363
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
364
|
-
self.set_output_cols(output_cols=cols)
|
365
|
-
|
366
367
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "XGBClassifier":
|
367
368
|
"""
|
368
369
|
Input columns setter.
|
@@ -408,54 +409,48 @@ class XGBClassifier(BaseTransformer):
|
|
408
409
|
self
|
409
410
|
"""
|
410
411
|
self._infer_input_output_cols(dataset)
|
411
|
-
if isinstance(dataset,
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
self.
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
412
|
+
if isinstance(dataset, DataFrame):
|
413
|
+
session = dataset._session
|
414
|
+
assert session is not None # keep mypy happy
|
415
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
416
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
417
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
418
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
419
|
+
|
420
|
+
# Specify input columns so column pruning will be enforced
|
421
|
+
selected_cols = self._get_active_columns()
|
422
|
+
if len(selected_cols) > 0:
|
423
|
+
dataset = dataset.select(selected_cols)
|
424
|
+
|
425
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
426
|
+
|
427
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
428
|
+
if SNOWML_SPROC_ENV in os.environ:
|
429
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
430
|
+
project=_PROJECT,
|
431
|
+
subproject=_SUBPROJECT,
|
432
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBClassifier.__class__.__name__),
|
433
|
+
api_calls=[Session.call],
|
434
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
435
|
+
)
|
436
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
437
|
+
pd_df.columns = dataset.columns
|
438
|
+
dataset = pd_df
|
439
|
+
|
440
|
+
model_trainer = ModelTrainerBuilder.build(
|
441
|
+
estimator=self._sklearn_object,
|
442
|
+
dataset=dataset,
|
443
|
+
input_cols=self.input_cols,
|
444
|
+
label_cols=self.label_cols,
|
445
|
+
sample_weight_col=self.sample_weight_col,
|
446
|
+
autogenerated=self._autogenerated,
|
447
|
+
subproject=_SUBPROJECT
|
448
|
+
)
|
449
|
+
self._sklearn_object = model_trainer.train()
|
427
450
|
self._is_fitted = True
|
428
451
|
self._get_model_signatures(dataset)
|
429
452
|
return self
|
430
453
|
|
431
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
432
|
-
session = dataset._session
|
433
|
-
assert session is not None # keep mypy happy
|
434
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
435
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
436
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
437
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
438
|
-
|
439
|
-
# Specify input columns so column pruning will be enforced
|
440
|
-
selected_cols = self._get_active_columns()
|
441
|
-
if len(selected_cols) > 0:
|
442
|
-
dataset = dataset.select(selected_cols)
|
443
|
-
|
444
|
-
estimator = self._sklearn_object
|
445
|
-
assert estimator is not None # Keep mypy happy
|
446
|
-
|
447
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
448
|
-
|
449
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
450
|
-
dataset,
|
451
|
-
session,
|
452
|
-
estimator,
|
453
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
454
|
-
self.input_cols,
|
455
|
-
self.label_cols,
|
456
|
-
self.sample_weight_col,
|
457
|
-
)
|
458
|
-
|
459
454
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
460
455
|
if self._drop_input_cols:
|
461
456
|
return []
|
@@ -643,11 +638,6 @@ class XGBClassifier(BaseTransformer):
|
|
643
638
|
subproject=_SUBPROJECT,
|
644
639
|
custom_tags=dict([("autogen", True)]),
|
645
640
|
)
|
646
|
-
@telemetry.add_stmt_params_to_df(
|
647
|
-
project=_PROJECT,
|
648
|
-
subproject=_SUBPROJECT,
|
649
|
-
custom_tags=dict([("autogen", True)]),
|
650
|
-
)
|
651
641
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
652
642
|
"""Predict with `X`
|
653
643
|
For more details on this function, see [xgboost.XGBClassifier.predict]
|
@@ -701,11 +691,6 @@ class XGBClassifier(BaseTransformer):
|
|
701
691
|
subproject=_SUBPROJECT,
|
702
692
|
custom_tags=dict([("autogen", True)]),
|
703
693
|
)
|
704
|
-
@telemetry.add_stmt_params_to_df(
|
705
|
-
project=_PROJECT,
|
706
|
-
subproject=_SUBPROJECT,
|
707
|
-
custom_tags=dict([("autogen", True)]),
|
708
|
-
)
|
709
694
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
710
695
|
"""Method not supported for this class.
|
711
696
|
|
@@ -762,7 +747,8 @@ class XGBClassifier(BaseTransformer):
|
|
762
747
|
if False:
|
763
748
|
self.fit(dataset)
|
764
749
|
assert self._sklearn_object is not None
|
765
|
-
|
750
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
751
|
+
return labels
|
766
752
|
else:
|
767
753
|
raise NotImplementedError
|
768
754
|
|
@@ -798,6 +784,7 @@ class XGBClassifier(BaseTransformer):
|
|
798
784
|
output_cols = []
|
799
785
|
|
800
786
|
# Make sure column names are valid snowflake identifiers.
|
787
|
+
assert output_cols is not None # Make MyPy happy
|
801
788
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
802
789
|
|
803
790
|
return rv
|
@@ -808,11 +795,6 @@ class XGBClassifier(BaseTransformer):
|
|
808
795
|
subproject=_SUBPROJECT,
|
809
796
|
custom_tags=dict([("autogen", True)]),
|
810
797
|
)
|
811
|
-
@telemetry.add_stmt_params_to_df(
|
812
|
-
project=_PROJECT,
|
813
|
-
subproject=_SUBPROJECT,
|
814
|
-
custom_tags=dict([("autogen", True)]),
|
815
|
-
)
|
816
798
|
def predict_proba(
|
817
799
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
818
800
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -855,11 +837,6 @@ class XGBClassifier(BaseTransformer):
|
|
855
837
|
subproject=_SUBPROJECT,
|
856
838
|
custom_tags=dict([("autogen", True)]),
|
857
839
|
)
|
858
|
-
@telemetry.add_stmt_params_to_df(
|
859
|
-
project=_PROJECT,
|
860
|
-
subproject=_SUBPROJECT,
|
861
|
-
custom_tags=dict([("autogen", True)]),
|
862
|
-
)
|
863
840
|
def predict_log_proba(
|
864
841
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
865
842
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -898,16 +875,6 @@ class XGBClassifier(BaseTransformer):
|
|
898
875
|
return output_df
|
899
876
|
|
900
877
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
901
|
-
@telemetry.send_api_usage_telemetry(
|
902
|
-
project=_PROJECT,
|
903
|
-
subproject=_SUBPROJECT,
|
904
|
-
custom_tags=dict([("autogen", True)]),
|
905
|
-
)
|
906
|
-
@telemetry.add_stmt_params_to_df(
|
907
|
-
project=_PROJECT,
|
908
|
-
subproject=_SUBPROJECT,
|
909
|
-
custom_tags=dict([("autogen", True)]),
|
910
|
-
)
|
911
878
|
def decision_function(
|
912
879
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
913
880
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -1008,11 +975,6 @@ class XGBClassifier(BaseTransformer):
|
|
1008
975
|
subproject=_SUBPROJECT,
|
1009
976
|
custom_tags=dict([("autogen", True)]),
|
1010
977
|
)
|
1011
|
-
@telemetry.add_stmt_params_to_df(
|
1012
|
-
project=_PROJECT,
|
1013
|
-
subproject=_SUBPROJECT,
|
1014
|
-
custom_tags=dict([("autogen", True)]),
|
1015
|
-
)
|
1016
978
|
def kneighbors(
|
1017
979
|
self,
|
1018
980
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1072,18 +1034,28 @@ class XGBClassifier(BaseTransformer):
|
|
1072
1034
|
# For classifier, the type of predict is the same as the type of label
|
1073
1035
|
if self._sklearn_object._estimator_type == 'classifier':
|
1074
1036
|
# label columns is the desired type for output
|
1075
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1037
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1076
1038
|
# rename the output columns
|
1077
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1039
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1040
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1041
|
+
([] if self._drop_input_cols else inputs)
|
1042
|
+
+ outputs)
|
1043
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1044
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1045
|
+
# Clusterer returns int64 cluster labels.
|
1046
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1047
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1078
1048
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1079
1049
|
([] if self._drop_input_cols else inputs)
|
1080
1050
|
+ outputs)
|
1051
|
+
|
1081
1052
|
# For regressor, the type of predict is float64
|
1082
1053
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1083
1054
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1084
1055
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1085
1056
|
([] if self._drop_input_cols else inputs)
|
1086
1057
|
+ outputs)
|
1058
|
+
|
1087
1059
|
for prob_func in PROB_FUNCTIONS:
|
1088
1060
|
if hasattr(self, prob_func):
|
1089
1061
|
output_cols_prefix: str = f"{prob_func}_"
|