snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KMeans(BaseTransformer):
|
57
58
|
r"""K-Means clustering
|
58
59
|
For more details on this class, see [sklearn.cluster.KMeans]
|
@@ -61,6 +62,48 @@ class KMeans(BaseTransformer):
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
64
|
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
64
107
|
n_clusters: int, default=8
|
65
108
|
The number of clusters to form as well as the number of
|
66
109
|
centroids to generate.
|
@@ -130,35 +173,6 @@ class KMeans(BaseTransformer):
|
|
130
173
|
|
131
174
|
`"auto"` and `"full"` are deprecated and they will be removed in
|
132
175
|
Scikit-Learn 1.3. They are both aliases for `"lloyd"`.
|
133
|
-
|
134
|
-
input_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or list of strings representing column names that contain features.
|
136
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
137
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
138
|
-
considered input columns.
|
139
|
-
|
140
|
-
label_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or list of strings representing column names that contain labels.
|
142
|
-
This is a required param for estimators, as there is no way to infer these
|
143
|
-
columns. If this parameter is not specified, then object is fitted without
|
144
|
-
labels (like a transformer).
|
145
|
-
|
146
|
-
output_cols: Optional[Union[str, List[str]]]
|
147
|
-
A string or list of strings representing column names that will store the
|
148
|
-
output of predict and transform operations. The length of output_cols must
|
149
|
-
match the expected number of output columns from the specific estimator or
|
150
|
-
transformer class used.
|
151
|
-
If this parameter is not specified, output column names are derived by
|
152
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
153
|
-
column names work for estimator's predict() method, but output_cols must
|
154
|
-
be set explicitly for transformers.
|
155
|
-
|
156
|
-
sample_weight_col: Optional[str]
|
157
|
-
A string representing the column name containing the sample weights.
|
158
|
-
This argument is only required when working with weighted datasets.
|
159
|
-
|
160
|
-
drop_input_cols: Optional[bool], default=False
|
161
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
162
176
|
"""
|
163
177
|
|
164
178
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -176,6 +190,7 @@ class KMeans(BaseTransformer):
|
|
176
190
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
177
191
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
178
192
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
193
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
179
194
|
drop_input_cols: Optional[bool] = False,
|
180
195
|
sample_weight_col: Optional[str] = None,
|
181
196
|
) -> None:
|
@@ -184,9 +199,10 @@ class KMeans(BaseTransformer):
|
|
184
199
|
self.set_input_cols(input_cols)
|
185
200
|
self.set_output_cols(output_cols)
|
186
201
|
self.set_label_cols(label_cols)
|
202
|
+
self.set_passthrough_cols(passthrough_cols)
|
187
203
|
self.set_drop_input_cols(drop_input_cols)
|
188
204
|
self.set_sample_weight_col(sample_weight_col)
|
189
|
-
deps = set(
|
205
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
190
206
|
|
191
207
|
self._deps = list(deps)
|
192
208
|
|
@@ -203,13 +219,14 @@ class KMeans(BaseTransformer):
|
|
203
219
|
args=init_args,
|
204
220
|
klass=sklearn.cluster.KMeans
|
205
221
|
)
|
206
|
-
self._sklearn_object = sklearn.cluster.KMeans(
|
222
|
+
self._sklearn_object: Any = sklearn.cluster.KMeans(
|
207
223
|
**cleaned_up_init_args,
|
208
224
|
)
|
209
225
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
210
226
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
211
227
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
212
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
228
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
229
|
+
self._autogenerated = True
|
213
230
|
|
214
231
|
def _get_rand_id(self) -> str:
|
215
232
|
"""
|
@@ -220,24 +237,6 @@ class KMeans(BaseTransformer):
|
|
220
237
|
"""
|
221
238
|
return str(uuid4()).replace("-", "_").upper()
|
222
239
|
|
223
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
224
|
-
"""
|
225
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
226
|
-
|
227
|
-
Args:
|
228
|
-
dataset: Input dataset.
|
229
|
-
"""
|
230
|
-
if not self.input_cols:
|
231
|
-
cols = [
|
232
|
-
c for c in dataset.columns
|
233
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
234
|
-
]
|
235
|
-
self.set_input_cols(input_cols=cols)
|
236
|
-
|
237
|
-
if not self.output_cols:
|
238
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
239
|
-
self.set_output_cols(output_cols=cols)
|
240
|
-
|
241
240
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "KMeans":
|
242
241
|
"""
|
243
242
|
Input columns setter.
|
@@ -283,54 +282,48 @@ class KMeans(BaseTransformer):
|
|
283
282
|
self
|
284
283
|
"""
|
285
284
|
self._infer_input_output_cols(dataset)
|
286
|
-
if isinstance(dataset,
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
self.
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
285
|
+
if isinstance(dataset, DataFrame):
|
286
|
+
session = dataset._session
|
287
|
+
assert session is not None # keep mypy happy
|
288
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
289
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
290
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
291
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
292
|
+
|
293
|
+
# Specify input columns so column pruning will be enforced
|
294
|
+
selected_cols = self._get_active_columns()
|
295
|
+
if len(selected_cols) > 0:
|
296
|
+
dataset = dataset.select(selected_cols)
|
297
|
+
|
298
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
299
|
+
|
300
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
301
|
+
if SNOWML_SPROC_ENV in os.environ:
|
302
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
303
|
+
project=_PROJECT,
|
304
|
+
subproject=_SUBPROJECT,
|
305
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KMeans.__class__.__name__),
|
306
|
+
api_calls=[Session.call],
|
307
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
308
|
+
)
|
309
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
310
|
+
pd_df.columns = dataset.columns
|
311
|
+
dataset = pd_df
|
312
|
+
|
313
|
+
model_trainer = ModelTrainerBuilder.build(
|
314
|
+
estimator=self._sklearn_object,
|
315
|
+
dataset=dataset,
|
316
|
+
input_cols=self.input_cols,
|
317
|
+
label_cols=self.label_cols,
|
318
|
+
sample_weight_col=self.sample_weight_col,
|
319
|
+
autogenerated=self._autogenerated,
|
320
|
+
subproject=_SUBPROJECT
|
321
|
+
)
|
322
|
+
self._sklearn_object = model_trainer.train()
|
302
323
|
self._is_fitted = True
|
303
324
|
self._get_model_signatures(dataset)
|
304
325
|
return self
|
305
326
|
|
306
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
307
|
-
session = dataset._session
|
308
|
-
assert session is not None # keep mypy happy
|
309
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
310
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
311
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
312
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
313
|
-
|
314
|
-
# Specify input columns so column pruning will be enforced
|
315
|
-
selected_cols = self._get_active_columns()
|
316
|
-
if len(selected_cols) > 0:
|
317
|
-
dataset = dataset.select(selected_cols)
|
318
|
-
|
319
|
-
estimator = self._sklearn_object
|
320
|
-
assert estimator is not None # Keep mypy happy
|
321
|
-
|
322
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
323
|
-
|
324
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
325
|
-
dataset,
|
326
|
-
session,
|
327
|
-
estimator,
|
328
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
329
|
-
self.input_cols,
|
330
|
-
self.label_cols,
|
331
|
-
self.sample_weight_col,
|
332
|
-
)
|
333
|
-
|
334
327
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
335
328
|
if self._drop_input_cols:
|
336
329
|
return []
|
@@ -518,11 +511,6 @@ class KMeans(BaseTransformer):
|
|
518
511
|
subproject=_SUBPROJECT,
|
519
512
|
custom_tags=dict([("autogen", True)]),
|
520
513
|
)
|
521
|
-
@telemetry.add_stmt_params_to_df(
|
522
|
-
project=_PROJECT,
|
523
|
-
subproject=_SUBPROJECT,
|
524
|
-
custom_tags=dict([("autogen", True)]),
|
525
|
-
)
|
526
514
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
527
515
|
"""Predict the closest cluster each sample in X belongs to
|
528
516
|
For more details on this function, see [sklearn.cluster.KMeans.predict]
|
@@ -576,11 +564,6 @@ class KMeans(BaseTransformer):
|
|
576
564
|
subproject=_SUBPROJECT,
|
577
565
|
custom_tags=dict([("autogen", True)]),
|
578
566
|
)
|
579
|
-
@telemetry.add_stmt_params_to_df(
|
580
|
-
project=_PROJECT,
|
581
|
-
subproject=_SUBPROJECT,
|
582
|
-
custom_tags=dict([("autogen", True)]),
|
583
|
-
)
|
584
567
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
585
568
|
"""Transform X to a cluster-distance space
|
586
569
|
For more details on this function, see [sklearn.cluster.KMeans.transform]
|
@@ -641,7 +624,8 @@ class KMeans(BaseTransformer):
|
|
641
624
|
if True:
|
642
625
|
self.fit(dataset)
|
643
626
|
assert self._sklearn_object is not None
|
644
|
-
|
627
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
628
|
+
return labels
|
645
629
|
else:
|
646
630
|
raise NotImplementedError
|
647
631
|
|
@@ -677,6 +661,7 @@ class KMeans(BaseTransformer):
|
|
677
661
|
output_cols = []
|
678
662
|
|
679
663
|
# Make sure column names are valid snowflake identifiers.
|
664
|
+
assert output_cols is not None # Make MyPy happy
|
680
665
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
681
666
|
|
682
667
|
return rv
|
@@ -687,11 +672,6 @@ class KMeans(BaseTransformer):
|
|
687
672
|
subproject=_SUBPROJECT,
|
688
673
|
custom_tags=dict([("autogen", True)]),
|
689
674
|
)
|
690
|
-
@telemetry.add_stmt_params_to_df(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
675
|
def predict_proba(
|
696
676
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
697
677
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -732,11 +712,6 @@ class KMeans(BaseTransformer):
|
|
732
712
|
subproject=_SUBPROJECT,
|
733
713
|
custom_tags=dict([("autogen", True)]),
|
734
714
|
)
|
735
|
-
@telemetry.add_stmt_params_to_df(
|
736
|
-
project=_PROJECT,
|
737
|
-
subproject=_SUBPROJECT,
|
738
|
-
custom_tags=dict([("autogen", True)]),
|
739
|
-
)
|
740
715
|
def predict_log_proba(
|
741
716
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
742
717
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -773,16 +748,6 @@ class KMeans(BaseTransformer):
|
|
773
748
|
return output_df
|
774
749
|
|
775
750
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
776
|
-
@telemetry.send_api_usage_telemetry(
|
777
|
-
project=_PROJECT,
|
778
|
-
subproject=_SUBPROJECT,
|
779
|
-
custom_tags=dict([("autogen", True)]),
|
780
|
-
)
|
781
|
-
@telemetry.add_stmt_params_to_df(
|
782
|
-
project=_PROJECT,
|
783
|
-
subproject=_SUBPROJECT,
|
784
|
-
custom_tags=dict([("autogen", True)]),
|
785
|
-
)
|
786
751
|
def decision_function(
|
787
752
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
788
753
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -883,11 +848,6 @@ class KMeans(BaseTransformer):
|
|
883
848
|
subproject=_SUBPROJECT,
|
884
849
|
custom_tags=dict([("autogen", True)]),
|
885
850
|
)
|
886
|
-
@telemetry.add_stmt_params_to_df(
|
887
|
-
project=_PROJECT,
|
888
|
-
subproject=_SUBPROJECT,
|
889
|
-
custom_tags=dict([("autogen", True)]),
|
890
|
-
)
|
891
851
|
def kneighbors(
|
892
852
|
self,
|
893
853
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -947,18 +907,28 @@ class KMeans(BaseTransformer):
|
|
947
907
|
# For classifier, the type of predict is the same as the type of label
|
948
908
|
if self._sklearn_object._estimator_type == 'classifier':
|
949
909
|
# label columns is the desired type for output
|
950
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
910
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
951
911
|
# rename the output columns
|
952
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
912
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
913
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
914
|
+
([] if self._drop_input_cols else inputs)
|
915
|
+
+ outputs)
|
916
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
917
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
918
|
+
# Clusterer returns int64 cluster labels.
|
919
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
920
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
953
921
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
954
922
|
([] if self._drop_input_cols else inputs)
|
955
923
|
+ outputs)
|
924
|
+
|
956
925
|
# For regressor, the type of predict is float64
|
957
926
|
elif self._sklearn_object._estimator_type == 'regressor':
|
958
927
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
959
928
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
960
929
|
([] if self._drop_input_cols else inputs)
|
961
930
|
+ outputs)
|
931
|
+
|
962
932
|
for prob_func in PROB_FUNCTIONS:
|
963
933
|
if hasattr(self, prob_func):
|
964
934
|
output_cols_prefix: str = f"{prob_func}_"
|