snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class KMeans(BaseTransformer):
57
58
  r"""K-Means clustering
58
59
  For more details on this class, see [sklearn.cluster.KMeans]
@@ -61,6 +62,48 @@ class KMeans(BaseTransformer):
61
62
  Parameters
62
63
  ----------
63
64
 
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
64
107
  n_clusters: int, default=8
65
108
  The number of clusters to form as well as the number of
66
109
  centroids to generate.
@@ -130,35 +173,6 @@ class KMeans(BaseTransformer):
130
173
 
131
174
  `"auto"` and `"full"` are deprecated and they will be removed in
132
175
  Scikit-Learn 1.3. They are both aliases for `"lloyd"`.
133
-
134
- input_cols: Optional[Union[str, List[str]]]
135
- A string or list of strings representing column names that contain features.
136
- If this parameter is not specified, all columns in the input DataFrame except
137
- the columns specified by label_cols and sample_weight_col parameters are
138
- considered input columns.
139
-
140
- label_cols: Optional[Union[str, List[str]]]
141
- A string or list of strings representing column names that contain labels.
142
- This is a required param for estimators, as there is no way to infer these
143
- columns. If this parameter is not specified, then object is fitted without
144
- labels (like a transformer).
145
-
146
- output_cols: Optional[Union[str, List[str]]]
147
- A string or list of strings representing column names that will store the
148
- output of predict and transform operations. The length of output_cols must
149
- match the expected number of output columns from the specific estimator or
150
- transformer class used.
151
- If this parameter is not specified, output column names are derived by
152
- adding an OUTPUT_ prefix to the label column names. These inferred output
153
- column names work for estimator's predict() method, but output_cols must
154
- be set explicitly for transformers.
155
-
156
- sample_weight_col: Optional[str]
157
- A string representing the column name containing the sample weights.
158
- This argument is only required when working with weighted datasets.
159
-
160
- drop_input_cols: Optional[bool], default=False
161
- If set, the response of predict(), transform() methods will not contain input columns.
162
176
  """
163
177
 
164
178
  def __init__( # type: ignore[no-untyped-def]
@@ -176,6 +190,7 @@ class KMeans(BaseTransformer):
176
190
  input_cols: Optional[Union[str, Iterable[str]]] = None,
177
191
  output_cols: Optional[Union[str, Iterable[str]]] = None,
178
192
  label_cols: Optional[Union[str, Iterable[str]]] = None,
193
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
179
194
  drop_input_cols: Optional[bool] = False,
180
195
  sample_weight_col: Optional[str] = None,
181
196
  ) -> None:
@@ -184,9 +199,10 @@ class KMeans(BaseTransformer):
184
199
  self.set_input_cols(input_cols)
185
200
  self.set_output_cols(output_cols)
186
201
  self.set_label_cols(label_cols)
202
+ self.set_passthrough_cols(passthrough_cols)
187
203
  self.set_drop_input_cols(drop_input_cols)
188
204
  self.set_sample_weight_col(sample_weight_col)
189
- deps = set(SklearnWrapperProvider().dependencies)
205
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
190
206
 
191
207
  self._deps = list(deps)
192
208
 
@@ -203,13 +219,14 @@ class KMeans(BaseTransformer):
203
219
  args=init_args,
204
220
  klass=sklearn.cluster.KMeans
205
221
  )
206
- self._sklearn_object = sklearn.cluster.KMeans(
222
+ self._sklearn_object: Any = sklearn.cluster.KMeans(
207
223
  **cleaned_up_init_args,
208
224
  )
209
225
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
210
226
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
211
227
  self._snowpark_cols: Optional[List[str]] = self.input_cols
212
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
228
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=KMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
229
+ self._autogenerated = True
213
230
 
214
231
  def _get_rand_id(self) -> str:
215
232
  """
@@ -220,24 +237,6 @@ class KMeans(BaseTransformer):
220
237
  """
221
238
  return str(uuid4()).replace("-", "_").upper()
222
239
 
223
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
224
- """
225
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
226
-
227
- Args:
228
- dataset: Input dataset.
229
- """
230
- if not self.input_cols:
231
- cols = [
232
- c for c in dataset.columns
233
- if c not in self.get_label_cols() and c != self.sample_weight_col
234
- ]
235
- self.set_input_cols(input_cols=cols)
236
-
237
- if not self.output_cols:
238
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
239
- self.set_output_cols(output_cols=cols)
240
-
241
240
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "KMeans":
242
241
  """
243
242
  Input columns setter.
@@ -283,54 +282,48 @@ class KMeans(BaseTransformer):
283
282
  self
284
283
  """
285
284
  self._infer_input_output_cols(dataset)
286
- if isinstance(dataset, pd.DataFrame):
287
- assert self._sklearn_object is not None # keep mypy happy
288
- self._sklearn_object = self._handlers.fit_pandas(
289
- dataset,
290
- self._sklearn_object,
291
- self.input_cols,
292
- self.label_cols,
293
- self.sample_weight_col
294
- )
295
- elif isinstance(dataset, DataFrame):
296
- self._fit_snowpark(dataset)
297
- else:
298
- raise TypeError(
299
- f"Unexpected dataset type: {type(dataset)}."
300
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
301
- )
285
+ if isinstance(dataset, DataFrame):
286
+ session = dataset._session
287
+ assert session is not None # keep mypy happy
288
+ # Validate that key package version in user workspace are supported in snowflake conda channel
289
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
290
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
291
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
292
+
293
+ # Specify input columns so column pruning will be enforced
294
+ selected_cols = self._get_active_columns()
295
+ if len(selected_cols) > 0:
296
+ dataset = dataset.select(selected_cols)
297
+
298
+ self._snowpark_cols = dataset.select(self.input_cols).columns
299
+
300
+ # If we are already in a stored procedure, no need to kick off another one.
301
+ if SNOWML_SPROC_ENV in os.environ:
302
+ statement_params = telemetry.get_function_usage_statement_params(
303
+ project=_PROJECT,
304
+ subproject=_SUBPROJECT,
305
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KMeans.__class__.__name__),
306
+ api_calls=[Session.call],
307
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
308
+ )
309
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
310
+ pd_df.columns = dataset.columns
311
+ dataset = pd_df
312
+
313
+ model_trainer = ModelTrainerBuilder.build(
314
+ estimator=self._sklearn_object,
315
+ dataset=dataset,
316
+ input_cols=self.input_cols,
317
+ label_cols=self.label_cols,
318
+ sample_weight_col=self.sample_weight_col,
319
+ autogenerated=self._autogenerated,
320
+ subproject=_SUBPROJECT
321
+ )
322
+ self._sklearn_object = model_trainer.train()
302
323
  self._is_fitted = True
303
324
  self._get_model_signatures(dataset)
304
325
  return self
305
326
 
306
- def _fit_snowpark(self, dataset: DataFrame) -> None:
307
- session = dataset._session
308
- assert session is not None # keep mypy happy
309
- # Validate that key package version in user workspace are supported in snowflake conda channel
310
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
311
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
312
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
313
-
314
- # Specify input columns so column pruning will be enforced
315
- selected_cols = self._get_active_columns()
316
- if len(selected_cols) > 0:
317
- dataset = dataset.select(selected_cols)
318
-
319
- estimator = self._sklearn_object
320
- assert estimator is not None # Keep mypy happy
321
-
322
- self._snowpark_cols = dataset.select(self.input_cols).columns
323
-
324
- self._sklearn_object = self._handlers.fit_snowpark(
325
- dataset,
326
- session,
327
- estimator,
328
- ["snowflake-snowpark-python"] + self._get_dependencies(),
329
- self.input_cols,
330
- self.label_cols,
331
- self.sample_weight_col,
332
- )
333
-
334
327
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
335
328
  if self._drop_input_cols:
336
329
  return []
@@ -518,11 +511,6 @@ class KMeans(BaseTransformer):
518
511
  subproject=_SUBPROJECT,
519
512
  custom_tags=dict([("autogen", True)]),
520
513
  )
521
- @telemetry.add_stmt_params_to_df(
522
- project=_PROJECT,
523
- subproject=_SUBPROJECT,
524
- custom_tags=dict([("autogen", True)]),
525
- )
526
514
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
527
515
  """Predict the closest cluster each sample in X belongs to
528
516
  For more details on this function, see [sklearn.cluster.KMeans.predict]
@@ -576,11 +564,6 @@ class KMeans(BaseTransformer):
576
564
  subproject=_SUBPROJECT,
577
565
  custom_tags=dict([("autogen", True)]),
578
566
  )
579
- @telemetry.add_stmt_params_to_df(
580
- project=_PROJECT,
581
- subproject=_SUBPROJECT,
582
- custom_tags=dict([("autogen", True)]),
583
- )
584
567
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
585
568
  """Transform X to a cluster-distance space
586
569
  For more details on this function, see [sklearn.cluster.KMeans.transform]
@@ -641,7 +624,8 @@ class KMeans(BaseTransformer):
641
624
  if True:
642
625
  self.fit(dataset)
643
626
  assert self._sklearn_object is not None
644
- return self._sklearn_object.labels_
627
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
628
+ return labels
645
629
  else:
646
630
  raise NotImplementedError
647
631
 
@@ -677,6 +661,7 @@ class KMeans(BaseTransformer):
677
661
  output_cols = []
678
662
 
679
663
  # Make sure column names are valid snowflake identifiers.
664
+ assert output_cols is not None # Make MyPy happy
680
665
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
681
666
 
682
667
  return rv
@@ -687,11 +672,6 @@ class KMeans(BaseTransformer):
687
672
  subproject=_SUBPROJECT,
688
673
  custom_tags=dict([("autogen", True)]),
689
674
  )
690
- @telemetry.add_stmt_params_to_df(
691
- project=_PROJECT,
692
- subproject=_SUBPROJECT,
693
- custom_tags=dict([("autogen", True)]),
694
- )
695
675
  def predict_proba(
696
676
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
697
677
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -732,11 +712,6 @@ class KMeans(BaseTransformer):
732
712
  subproject=_SUBPROJECT,
733
713
  custom_tags=dict([("autogen", True)]),
734
714
  )
735
- @telemetry.add_stmt_params_to_df(
736
- project=_PROJECT,
737
- subproject=_SUBPROJECT,
738
- custom_tags=dict([("autogen", True)]),
739
- )
740
715
  def predict_log_proba(
741
716
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
742
717
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -773,16 +748,6 @@ class KMeans(BaseTransformer):
773
748
  return output_df
774
749
 
775
750
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
776
- @telemetry.send_api_usage_telemetry(
777
- project=_PROJECT,
778
- subproject=_SUBPROJECT,
779
- custom_tags=dict([("autogen", True)]),
780
- )
781
- @telemetry.add_stmt_params_to_df(
782
- project=_PROJECT,
783
- subproject=_SUBPROJECT,
784
- custom_tags=dict([("autogen", True)]),
785
- )
786
751
  def decision_function(
787
752
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
788
753
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -883,11 +848,6 @@ class KMeans(BaseTransformer):
883
848
  subproject=_SUBPROJECT,
884
849
  custom_tags=dict([("autogen", True)]),
885
850
  )
886
- @telemetry.add_stmt_params_to_df(
887
- project=_PROJECT,
888
- subproject=_SUBPROJECT,
889
- custom_tags=dict([("autogen", True)]),
890
- )
891
851
  def kneighbors(
892
852
  self,
893
853
  dataset: Union[DataFrame, pd.DataFrame],
@@ -947,18 +907,28 @@ class KMeans(BaseTransformer):
947
907
  # For classifier, the type of predict is the same as the type of label
948
908
  if self._sklearn_object._estimator_type == 'classifier':
949
909
  # label columns is the desired type for output
950
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
910
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
951
911
  # rename the output columns
952
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
912
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
913
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
914
+ ([] if self._drop_input_cols else inputs)
915
+ + outputs)
916
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
917
+ # For outlier models, returns -1 for outliers and 1 for inliers.
918
+ # Clusterer returns int64 cluster labels.
919
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
920
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
953
921
  self._model_signature_dict["predict"] = ModelSignature(inputs,
954
922
  ([] if self._drop_input_cols else inputs)
955
923
  + outputs)
924
+
956
925
  # For regressor, the type of predict is float64
957
926
  elif self._sklearn_object._estimator_type == 'regressor':
958
927
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
959
928
  self._model_signature_dict["predict"] = ModelSignature(inputs,
960
929
  ([] if self._drop_input_cols else inputs)
961
930
  + outputs)
931
+
962
932
  for prob_func in PROB_FUNCTIONS:
963
933
  if hasattr(self, prob_func):
964
934
  output_cols_prefix: str = f"{prob_func}_"