snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LassoLars(BaseTransformer):
|
57
58
|
r"""Lasso model fit with Least Angle Regression a
|
58
59
|
For more details on this class, see [sklearn.linear_model.LassoLars]
|
@@ -60,6 +61,51 @@ class LassoLars(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Constant that multiplies the penalty term. Defaults to 1.0.
|
65
111
|
``alpha = 0`` is equivalent to an ordinary least square, solved
|
@@ -126,35 +172,6 @@ class LassoLars(BaseTransformer):
|
|
126
172
|
Determines random number generation for jittering. Pass an int
|
127
173
|
for reproducible output across multiple function calls.
|
128
174
|
See :term:`Glossary <random_state>`. Ignored if `jitter` is None.
|
129
|
-
|
130
|
-
input_cols: Optional[Union[str, List[str]]]
|
131
|
-
A string or list of strings representing column names that contain features.
|
132
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
133
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
134
|
-
considered input columns.
|
135
|
-
|
136
|
-
label_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain labels.
|
138
|
-
This is a required param for estimators, as there is no way to infer these
|
139
|
-
columns. If this parameter is not specified, then object is fitted without
|
140
|
-
labels (like a transformer).
|
141
|
-
|
142
|
-
output_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that will store the
|
144
|
-
output of predict and transform operations. The length of output_cols must
|
145
|
-
match the expected number of output columns from the specific estimator or
|
146
|
-
transformer class used.
|
147
|
-
If this parameter is not specified, output column names are derived by
|
148
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
149
|
-
column names work for estimator's predict() method, but output_cols must
|
150
|
-
be set explicitly for transformers.
|
151
|
-
|
152
|
-
sample_weight_col: Optional[str]
|
153
|
-
A string representing the column name containing the sample weights.
|
154
|
-
This argument is only required when working with weighted datasets.
|
155
|
-
|
156
|
-
drop_input_cols: Optional[bool], default=False
|
157
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
158
175
|
"""
|
159
176
|
|
160
177
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -175,6 +192,7 @@ class LassoLars(BaseTransformer):
|
|
175
192
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
176
193
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
177
194
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
195
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
178
196
|
drop_input_cols: Optional[bool] = False,
|
179
197
|
sample_weight_col: Optional[str] = None,
|
180
198
|
) -> None:
|
@@ -183,9 +201,10 @@ class LassoLars(BaseTransformer):
|
|
183
201
|
self.set_input_cols(input_cols)
|
184
202
|
self.set_output_cols(output_cols)
|
185
203
|
self.set_label_cols(label_cols)
|
204
|
+
self.set_passthrough_cols(passthrough_cols)
|
186
205
|
self.set_drop_input_cols(drop_input_cols)
|
187
206
|
self.set_sample_weight_col(sample_weight_col)
|
188
|
-
deps = set(
|
207
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
189
208
|
|
190
209
|
self._deps = list(deps)
|
191
210
|
|
@@ -205,13 +224,14 @@ class LassoLars(BaseTransformer):
|
|
205
224
|
args=init_args,
|
206
225
|
klass=sklearn.linear_model.LassoLars
|
207
226
|
)
|
208
|
-
self._sklearn_object = sklearn.linear_model.LassoLars(
|
227
|
+
self._sklearn_object: Any = sklearn.linear_model.LassoLars(
|
209
228
|
**cleaned_up_init_args,
|
210
229
|
)
|
211
230
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
212
231
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
213
232
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
214
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLars.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
233
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LassoLars.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
234
|
+
self._autogenerated = True
|
215
235
|
|
216
236
|
def _get_rand_id(self) -> str:
|
217
237
|
"""
|
@@ -222,24 +242,6 @@ class LassoLars(BaseTransformer):
|
|
222
242
|
"""
|
223
243
|
return str(uuid4()).replace("-", "_").upper()
|
224
244
|
|
225
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
226
|
-
"""
|
227
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
228
|
-
|
229
|
-
Args:
|
230
|
-
dataset: Input dataset.
|
231
|
-
"""
|
232
|
-
if not self.input_cols:
|
233
|
-
cols = [
|
234
|
-
c for c in dataset.columns
|
235
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
236
|
-
]
|
237
|
-
self.set_input_cols(input_cols=cols)
|
238
|
-
|
239
|
-
if not self.output_cols:
|
240
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
241
|
-
self.set_output_cols(output_cols=cols)
|
242
|
-
|
243
245
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LassoLars":
|
244
246
|
"""
|
245
247
|
Input columns setter.
|
@@ -285,54 +287,48 @@ class LassoLars(BaseTransformer):
|
|
285
287
|
self
|
286
288
|
"""
|
287
289
|
self._infer_input_output_cols(dataset)
|
288
|
-
if isinstance(dataset,
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
self.
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
290
|
+
if isinstance(dataset, DataFrame):
|
291
|
+
session = dataset._session
|
292
|
+
assert session is not None # keep mypy happy
|
293
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
294
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
295
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
296
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
297
|
+
|
298
|
+
# Specify input columns so column pruning will be enforced
|
299
|
+
selected_cols = self._get_active_columns()
|
300
|
+
if len(selected_cols) > 0:
|
301
|
+
dataset = dataset.select(selected_cols)
|
302
|
+
|
303
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
304
|
+
|
305
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
306
|
+
if SNOWML_SPROC_ENV in os.environ:
|
307
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
308
|
+
project=_PROJECT,
|
309
|
+
subproject=_SUBPROJECT,
|
310
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLars.__class__.__name__),
|
311
|
+
api_calls=[Session.call],
|
312
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
313
|
+
)
|
314
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
315
|
+
pd_df.columns = dataset.columns
|
316
|
+
dataset = pd_df
|
317
|
+
|
318
|
+
model_trainer = ModelTrainerBuilder.build(
|
319
|
+
estimator=self._sklearn_object,
|
320
|
+
dataset=dataset,
|
321
|
+
input_cols=self.input_cols,
|
322
|
+
label_cols=self.label_cols,
|
323
|
+
sample_weight_col=self.sample_weight_col,
|
324
|
+
autogenerated=self._autogenerated,
|
325
|
+
subproject=_SUBPROJECT
|
326
|
+
)
|
327
|
+
self._sklearn_object = model_trainer.train()
|
304
328
|
self._is_fitted = True
|
305
329
|
self._get_model_signatures(dataset)
|
306
330
|
return self
|
307
331
|
|
308
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
309
|
-
session = dataset._session
|
310
|
-
assert session is not None # keep mypy happy
|
311
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
312
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
313
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
314
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
315
|
-
|
316
|
-
# Specify input columns so column pruning will be enforced
|
317
|
-
selected_cols = self._get_active_columns()
|
318
|
-
if len(selected_cols) > 0:
|
319
|
-
dataset = dataset.select(selected_cols)
|
320
|
-
|
321
|
-
estimator = self._sklearn_object
|
322
|
-
assert estimator is not None # Keep mypy happy
|
323
|
-
|
324
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
325
|
-
|
326
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
327
|
-
dataset,
|
328
|
-
session,
|
329
|
-
estimator,
|
330
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
331
|
-
self.input_cols,
|
332
|
-
self.label_cols,
|
333
|
-
self.sample_weight_col,
|
334
|
-
)
|
335
|
-
|
336
332
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
337
333
|
if self._drop_input_cols:
|
338
334
|
return []
|
@@ -520,11 +516,6 @@ class LassoLars(BaseTransformer):
|
|
520
516
|
subproject=_SUBPROJECT,
|
521
517
|
custom_tags=dict([("autogen", True)]),
|
522
518
|
)
|
523
|
-
@telemetry.add_stmt_params_to_df(
|
524
|
-
project=_PROJECT,
|
525
|
-
subproject=_SUBPROJECT,
|
526
|
-
custom_tags=dict([("autogen", True)]),
|
527
|
-
)
|
528
519
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
529
520
|
"""Predict using the linear model
|
530
521
|
For more details on this function, see [sklearn.linear_model.LassoLars.predict]
|
@@ -578,11 +569,6 @@ class LassoLars(BaseTransformer):
|
|
578
569
|
subproject=_SUBPROJECT,
|
579
570
|
custom_tags=dict([("autogen", True)]),
|
580
571
|
)
|
581
|
-
@telemetry.add_stmt_params_to_df(
|
582
|
-
project=_PROJECT,
|
583
|
-
subproject=_SUBPROJECT,
|
584
|
-
custom_tags=dict([("autogen", True)]),
|
585
|
-
)
|
586
572
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
587
573
|
"""Method not supported for this class.
|
588
574
|
|
@@ -639,7 +625,8 @@ class LassoLars(BaseTransformer):
|
|
639
625
|
if False:
|
640
626
|
self.fit(dataset)
|
641
627
|
assert self._sklearn_object is not None
|
642
|
-
|
628
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
629
|
+
return labels
|
643
630
|
else:
|
644
631
|
raise NotImplementedError
|
645
632
|
|
@@ -675,6 +662,7 @@ class LassoLars(BaseTransformer):
|
|
675
662
|
output_cols = []
|
676
663
|
|
677
664
|
# Make sure column names are valid snowflake identifiers.
|
665
|
+
assert output_cols is not None # Make MyPy happy
|
678
666
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
679
667
|
|
680
668
|
return rv
|
@@ -685,11 +673,6 @@ class LassoLars(BaseTransformer):
|
|
685
673
|
subproject=_SUBPROJECT,
|
686
674
|
custom_tags=dict([("autogen", True)]),
|
687
675
|
)
|
688
|
-
@telemetry.add_stmt_params_to_df(
|
689
|
-
project=_PROJECT,
|
690
|
-
subproject=_SUBPROJECT,
|
691
|
-
custom_tags=dict([("autogen", True)]),
|
692
|
-
)
|
693
676
|
def predict_proba(
|
694
677
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
695
678
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -730,11 +713,6 @@ class LassoLars(BaseTransformer):
|
|
730
713
|
subproject=_SUBPROJECT,
|
731
714
|
custom_tags=dict([("autogen", True)]),
|
732
715
|
)
|
733
|
-
@telemetry.add_stmt_params_to_df(
|
734
|
-
project=_PROJECT,
|
735
|
-
subproject=_SUBPROJECT,
|
736
|
-
custom_tags=dict([("autogen", True)]),
|
737
|
-
)
|
738
716
|
def predict_log_proba(
|
739
717
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
740
718
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -771,16 +749,6 @@ class LassoLars(BaseTransformer):
|
|
771
749
|
return output_df
|
772
750
|
|
773
751
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
774
|
-
@telemetry.send_api_usage_telemetry(
|
775
|
-
project=_PROJECT,
|
776
|
-
subproject=_SUBPROJECT,
|
777
|
-
custom_tags=dict([("autogen", True)]),
|
778
|
-
)
|
779
|
-
@telemetry.add_stmt_params_to_df(
|
780
|
-
project=_PROJECT,
|
781
|
-
subproject=_SUBPROJECT,
|
782
|
-
custom_tags=dict([("autogen", True)]),
|
783
|
-
)
|
784
752
|
def decision_function(
|
785
753
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
786
754
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -881,11 +849,6 @@ class LassoLars(BaseTransformer):
|
|
881
849
|
subproject=_SUBPROJECT,
|
882
850
|
custom_tags=dict([("autogen", True)]),
|
883
851
|
)
|
884
|
-
@telemetry.add_stmt_params_to_df(
|
885
|
-
project=_PROJECT,
|
886
|
-
subproject=_SUBPROJECT,
|
887
|
-
custom_tags=dict([("autogen", True)]),
|
888
|
-
)
|
889
852
|
def kneighbors(
|
890
853
|
self,
|
891
854
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -945,18 +908,28 @@ class LassoLars(BaseTransformer):
|
|
945
908
|
# For classifier, the type of predict is the same as the type of label
|
946
909
|
if self._sklearn_object._estimator_type == 'classifier':
|
947
910
|
# label columns is the desired type for output
|
948
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
911
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
949
912
|
# rename the output columns
|
950
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
913
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
951
914
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
952
915
|
([] if self._drop_input_cols else inputs)
|
953
916
|
+ outputs)
|
917
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
918
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
919
|
+
# Clusterer returns int64 cluster labels.
|
920
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
921
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
922
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
923
|
+
([] if self._drop_input_cols else inputs)
|
924
|
+
+ outputs)
|
925
|
+
|
954
926
|
# For regressor, the type of predict is float64
|
955
927
|
elif self._sklearn_object._estimator_type == 'regressor':
|
956
928
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
957
929
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
958
930
|
([] if self._drop_input_cols else inputs)
|
959
931
|
+ outputs)
|
932
|
+
|
960
933
|
for prob_func in PROB_FUNCTIONS:
|
961
934
|
if hasattr(self, prob_func):
|
962
935
|
output_cols_prefix: str = f"{prob_func}_"
|