snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class TransformedTargetRegressor(BaseTransformer):
57
58
  r"""Meta-estimator to regress on a transformed target
58
59
  For more details on this class, see [sklearn.compose.TransformedTargetRegressor]
@@ -60,6 +61,51 @@ class TransformedTargetRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  regressor: object, default=None
64
110
  Regressor object such as derived from
65
111
  :class:`~sklearn.base.RegressorMixin`. This regressor will
@@ -89,35 +135,6 @@ class TransformedTargetRegressor(BaseTransformer):
89
135
  check_inverse: bool, default=True
90
136
  Whether to check that `transform` followed by `inverse_transform`
91
137
  or `func` followed by `inverse_func` leads to the original targets.
92
-
93
- input_cols: Optional[Union[str, List[str]]]
94
- A string or list of strings representing column names that contain features.
95
- If this parameter is not specified, all columns in the input DataFrame except
96
- the columns specified by label_cols and sample_weight_col parameters are
97
- considered input columns.
98
-
99
- label_cols: Optional[Union[str, List[str]]]
100
- A string or list of strings representing column names that contain labels.
101
- This is a required param for estimators, as there is no way to infer these
102
- columns. If this parameter is not specified, then object is fitted without
103
- labels (like a transformer).
104
-
105
- output_cols: Optional[Union[str, List[str]]]
106
- A string or list of strings representing column names that will store the
107
- output of predict and transform operations. The length of output_cols must
108
- match the expected number of output columns from the specific estimator or
109
- transformer class used.
110
- If this parameter is not specified, output column names are derived by
111
- adding an OUTPUT_ prefix to the label column names. These inferred output
112
- column names work for estimator's predict() method, but output_cols must
113
- be set explicitly for transformers.
114
-
115
- sample_weight_col: Optional[str]
116
- A string representing the column name containing the sample weights.
117
- This argument is only required when working with weighted datasets.
118
-
119
- drop_input_cols: Optional[bool], default=False
120
- If set, the response of predict(), transform() methods will not contain input columns.
121
138
  """
122
139
 
123
140
  def __init__( # type: ignore[no-untyped-def]
@@ -131,6 +148,7 @@ class TransformedTargetRegressor(BaseTransformer):
131
148
  input_cols: Optional[Union[str, Iterable[str]]] = None,
132
149
  output_cols: Optional[Union[str, Iterable[str]]] = None,
133
150
  label_cols: Optional[Union[str, Iterable[str]]] = None,
151
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
134
152
  drop_input_cols: Optional[bool] = False,
135
153
  sample_weight_col: Optional[str] = None,
136
154
  ) -> None:
@@ -139,9 +157,10 @@ class TransformedTargetRegressor(BaseTransformer):
139
157
  self.set_input_cols(input_cols)
140
158
  self.set_output_cols(output_cols)
141
159
  self.set_label_cols(label_cols)
160
+ self.set_passthrough_cols(passthrough_cols)
142
161
  self.set_drop_input_cols(drop_input_cols)
143
162
  self.set_sample_weight_col(sample_weight_col)
144
- deps = set(SklearnWrapperProvider().dependencies)
163
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
145
164
 
146
165
  self._deps = list(deps)
147
166
 
@@ -154,13 +173,14 @@ class TransformedTargetRegressor(BaseTransformer):
154
173
  args=init_args,
155
174
  klass=sklearn.compose.TransformedTargetRegressor
156
175
  )
157
- self._sklearn_object = sklearn.compose.TransformedTargetRegressor(
176
+ self._sklearn_object: Any = sklearn.compose.TransformedTargetRegressor(
158
177
  **cleaned_up_init_args,
159
178
  )
160
179
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
161
180
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
162
181
  self._snowpark_cols: Optional[List[str]] = self.input_cols
163
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=TransformedTargetRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
182
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=TransformedTargetRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
183
+ self._autogenerated = True
164
184
 
165
185
  def _get_rand_id(self) -> str:
166
186
  """
@@ -171,24 +191,6 @@ class TransformedTargetRegressor(BaseTransformer):
171
191
  """
172
192
  return str(uuid4()).replace("-", "_").upper()
173
193
 
174
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
175
- """
176
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
177
-
178
- Args:
179
- dataset: Input dataset.
180
- """
181
- if not self.input_cols:
182
- cols = [
183
- c for c in dataset.columns
184
- if c not in self.get_label_cols() and c != self.sample_weight_col
185
- ]
186
- self.set_input_cols(input_cols=cols)
187
-
188
- if not self.output_cols:
189
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
190
- self.set_output_cols(output_cols=cols)
191
-
192
194
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "TransformedTargetRegressor":
193
195
  """
194
196
  Input columns setter.
@@ -234,54 +236,48 @@ class TransformedTargetRegressor(BaseTransformer):
234
236
  self
235
237
  """
236
238
  self._infer_input_output_cols(dataset)
237
- if isinstance(dataset, pd.DataFrame):
238
- assert self._sklearn_object is not None # keep mypy happy
239
- self._sklearn_object = self._handlers.fit_pandas(
240
- dataset,
241
- self._sklearn_object,
242
- self.input_cols,
243
- self.label_cols,
244
- self.sample_weight_col
245
- )
246
- elif isinstance(dataset, DataFrame):
247
- self._fit_snowpark(dataset)
248
- else:
249
- raise TypeError(
250
- f"Unexpected dataset type: {type(dataset)}."
251
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
252
- )
239
+ if isinstance(dataset, DataFrame):
240
+ session = dataset._session
241
+ assert session is not None # keep mypy happy
242
+ # Validate that key package version in user workspace are supported in snowflake conda channel
243
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
244
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
245
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
246
+
247
+ # Specify input columns so column pruning will be enforced
248
+ selected_cols = self._get_active_columns()
249
+ if len(selected_cols) > 0:
250
+ dataset = dataset.select(selected_cols)
251
+
252
+ self._snowpark_cols = dataset.select(self.input_cols).columns
253
+
254
+ # If we are already in a stored procedure, no need to kick off another one.
255
+ if SNOWML_SPROC_ENV in os.environ:
256
+ statement_params = telemetry.get_function_usage_statement_params(
257
+ project=_PROJECT,
258
+ subproject=_SUBPROJECT,
259
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TransformedTargetRegressor.__class__.__name__),
260
+ api_calls=[Session.call],
261
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
262
+ )
263
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
264
+ pd_df.columns = dataset.columns
265
+ dataset = pd_df
266
+
267
+ model_trainer = ModelTrainerBuilder.build(
268
+ estimator=self._sklearn_object,
269
+ dataset=dataset,
270
+ input_cols=self.input_cols,
271
+ label_cols=self.label_cols,
272
+ sample_weight_col=self.sample_weight_col,
273
+ autogenerated=self._autogenerated,
274
+ subproject=_SUBPROJECT
275
+ )
276
+ self._sklearn_object = model_trainer.train()
253
277
  self._is_fitted = True
254
278
  self._get_model_signatures(dataset)
255
279
  return self
256
280
 
257
- def _fit_snowpark(self, dataset: DataFrame) -> None:
258
- session = dataset._session
259
- assert session is not None # keep mypy happy
260
- # Validate that key package version in user workspace are supported in snowflake conda channel
261
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
262
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
263
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
264
-
265
- # Specify input columns so column pruning will be enforced
266
- selected_cols = self._get_active_columns()
267
- if len(selected_cols) > 0:
268
- dataset = dataset.select(selected_cols)
269
-
270
- estimator = self._sklearn_object
271
- assert estimator is not None # Keep mypy happy
272
-
273
- self._snowpark_cols = dataset.select(self.input_cols).columns
274
-
275
- self._sklearn_object = self._handlers.fit_snowpark(
276
- dataset,
277
- session,
278
- estimator,
279
- ["snowflake-snowpark-python"] + self._get_dependencies(),
280
- self.input_cols,
281
- self.label_cols,
282
- self.sample_weight_col,
283
- )
284
-
285
281
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
286
282
  if self._drop_input_cols:
287
283
  return []
@@ -469,11 +465,6 @@ class TransformedTargetRegressor(BaseTransformer):
469
465
  subproject=_SUBPROJECT,
470
466
  custom_tags=dict([("autogen", True)]),
471
467
  )
472
- @telemetry.add_stmt_params_to_df(
473
- project=_PROJECT,
474
- subproject=_SUBPROJECT,
475
- custom_tags=dict([("autogen", True)]),
476
- )
477
468
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
478
469
  """Predict using the base regressor, applying inverse
479
470
  For more details on this function, see [sklearn.compose.TransformedTargetRegressor.predict]
@@ -527,11 +518,6 @@ class TransformedTargetRegressor(BaseTransformer):
527
518
  subproject=_SUBPROJECT,
528
519
  custom_tags=dict([("autogen", True)]),
529
520
  )
530
- @telemetry.add_stmt_params_to_df(
531
- project=_PROJECT,
532
- subproject=_SUBPROJECT,
533
- custom_tags=dict([("autogen", True)]),
534
- )
535
521
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
536
522
  """Method not supported for this class.
537
523
 
@@ -588,7 +574,8 @@ class TransformedTargetRegressor(BaseTransformer):
588
574
  if False:
589
575
  self.fit(dataset)
590
576
  assert self._sklearn_object is not None
591
- return self._sklearn_object.labels_
577
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
578
+ return labels
592
579
  else:
593
580
  raise NotImplementedError
594
581
 
@@ -624,6 +611,7 @@ class TransformedTargetRegressor(BaseTransformer):
624
611
  output_cols = []
625
612
 
626
613
  # Make sure column names are valid snowflake identifiers.
614
+ assert output_cols is not None # Make MyPy happy
627
615
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
628
616
 
629
617
  return rv
@@ -634,11 +622,6 @@ class TransformedTargetRegressor(BaseTransformer):
634
622
  subproject=_SUBPROJECT,
635
623
  custom_tags=dict([("autogen", True)]),
636
624
  )
637
- @telemetry.add_stmt_params_to_df(
638
- project=_PROJECT,
639
- subproject=_SUBPROJECT,
640
- custom_tags=dict([("autogen", True)]),
641
- )
642
625
  def predict_proba(
643
626
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
644
627
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -679,11 +662,6 @@ class TransformedTargetRegressor(BaseTransformer):
679
662
  subproject=_SUBPROJECT,
680
663
  custom_tags=dict([("autogen", True)]),
681
664
  )
682
- @telemetry.add_stmt_params_to_df(
683
- project=_PROJECT,
684
- subproject=_SUBPROJECT,
685
- custom_tags=dict([("autogen", True)]),
686
- )
687
665
  def predict_log_proba(
688
666
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
689
667
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -720,16 +698,6 @@ class TransformedTargetRegressor(BaseTransformer):
720
698
  return output_df
721
699
 
722
700
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
723
- @telemetry.send_api_usage_telemetry(
724
- project=_PROJECT,
725
- subproject=_SUBPROJECT,
726
- custom_tags=dict([("autogen", True)]),
727
- )
728
- @telemetry.add_stmt_params_to_df(
729
- project=_PROJECT,
730
- subproject=_SUBPROJECT,
731
- custom_tags=dict([("autogen", True)]),
732
- )
733
701
  def decision_function(
734
702
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
735
703
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -830,11 +798,6 @@ class TransformedTargetRegressor(BaseTransformer):
830
798
  subproject=_SUBPROJECT,
831
799
  custom_tags=dict([("autogen", True)]),
832
800
  )
833
- @telemetry.add_stmt_params_to_df(
834
- project=_PROJECT,
835
- subproject=_SUBPROJECT,
836
- custom_tags=dict([("autogen", True)]),
837
- )
838
801
  def kneighbors(
839
802
  self,
840
803
  dataset: Union[DataFrame, pd.DataFrame],
@@ -894,18 +857,28 @@ class TransformedTargetRegressor(BaseTransformer):
894
857
  # For classifier, the type of predict is the same as the type of label
895
858
  if self._sklearn_object._estimator_type == 'classifier':
896
859
  # label columns is the desired type for output
897
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
860
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
898
861
  # rename the output columns
899
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
862
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
900
863
  self._model_signature_dict["predict"] = ModelSignature(inputs,
901
864
  ([] if self._drop_input_cols else inputs)
902
865
  + outputs)
866
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
867
+ # For outlier models, returns -1 for outliers and 1 for inliers.
868
+ # Clusterer returns int64 cluster labels.
869
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
870
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
871
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
872
+ ([] if self._drop_input_cols else inputs)
873
+ + outputs)
874
+
903
875
  # For regressor, the type of predict is float64
904
876
  elif self._sklearn_object._estimator_type == 'regressor':
905
877
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
906
878
  self._model_signature_dict["predict"] = ModelSignature(inputs,
907
879
  ([] if self._drop_input_cols else inputs)
908
880
  + outputs)
881
+
909
882
  for prob_func in PROB_FUNCTIONS:
910
883
  if hasattr(self, prob_func):
911
884
  output_cols_prefix: str = f"{prob_func}_"