snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class TransformedTargetRegressor(BaseTransformer):
|
57
58
|
r"""Meta-estimator to regress on a transformed target
|
58
59
|
For more details on this class, see [sklearn.compose.TransformedTargetRegressor]
|
@@ -60,6 +61,51 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
regressor: object, default=None
|
64
110
|
Regressor object such as derived from
|
65
111
|
:class:`~sklearn.base.RegressorMixin`. This regressor will
|
@@ -89,35 +135,6 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
89
135
|
check_inverse: bool, default=True
|
90
136
|
Whether to check that `transform` followed by `inverse_transform`
|
91
137
|
or `func` followed by `inverse_func` leads to the original targets.
|
92
|
-
|
93
|
-
input_cols: Optional[Union[str, List[str]]]
|
94
|
-
A string or list of strings representing column names that contain features.
|
95
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
96
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
97
|
-
considered input columns.
|
98
|
-
|
99
|
-
label_cols: Optional[Union[str, List[str]]]
|
100
|
-
A string or list of strings representing column names that contain labels.
|
101
|
-
This is a required param for estimators, as there is no way to infer these
|
102
|
-
columns. If this parameter is not specified, then object is fitted without
|
103
|
-
labels (like a transformer).
|
104
|
-
|
105
|
-
output_cols: Optional[Union[str, List[str]]]
|
106
|
-
A string or list of strings representing column names that will store the
|
107
|
-
output of predict and transform operations. The length of output_cols must
|
108
|
-
match the expected number of output columns from the specific estimator or
|
109
|
-
transformer class used.
|
110
|
-
If this parameter is not specified, output column names are derived by
|
111
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
112
|
-
column names work for estimator's predict() method, but output_cols must
|
113
|
-
be set explicitly for transformers.
|
114
|
-
|
115
|
-
sample_weight_col: Optional[str]
|
116
|
-
A string representing the column name containing the sample weights.
|
117
|
-
This argument is only required when working with weighted datasets.
|
118
|
-
|
119
|
-
drop_input_cols: Optional[bool], default=False
|
120
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
121
138
|
"""
|
122
139
|
|
123
140
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -131,6 +148,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
131
148
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
132
149
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
133
150
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
151
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
134
152
|
drop_input_cols: Optional[bool] = False,
|
135
153
|
sample_weight_col: Optional[str] = None,
|
136
154
|
) -> None:
|
@@ -139,9 +157,10 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
139
157
|
self.set_input_cols(input_cols)
|
140
158
|
self.set_output_cols(output_cols)
|
141
159
|
self.set_label_cols(label_cols)
|
160
|
+
self.set_passthrough_cols(passthrough_cols)
|
142
161
|
self.set_drop_input_cols(drop_input_cols)
|
143
162
|
self.set_sample_weight_col(sample_weight_col)
|
144
|
-
deps = set(
|
163
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
145
164
|
|
146
165
|
self._deps = list(deps)
|
147
166
|
|
@@ -154,13 +173,14 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
154
173
|
args=init_args,
|
155
174
|
klass=sklearn.compose.TransformedTargetRegressor
|
156
175
|
)
|
157
|
-
self._sklearn_object = sklearn.compose.TransformedTargetRegressor(
|
176
|
+
self._sklearn_object: Any = sklearn.compose.TransformedTargetRegressor(
|
158
177
|
**cleaned_up_init_args,
|
159
178
|
)
|
160
179
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
161
180
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
162
181
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
163
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TransformedTargetRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
182
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=TransformedTargetRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
183
|
+
self._autogenerated = True
|
164
184
|
|
165
185
|
def _get_rand_id(self) -> str:
|
166
186
|
"""
|
@@ -171,24 +191,6 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
171
191
|
"""
|
172
192
|
return str(uuid4()).replace("-", "_").upper()
|
173
193
|
|
174
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
175
|
-
"""
|
176
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
177
|
-
|
178
|
-
Args:
|
179
|
-
dataset: Input dataset.
|
180
|
-
"""
|
181
|
-
if not self.input_cols:
|
182
|
-
cols = [
|
183
|
-
c for c in dataset.columns
|
184
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
185
|
-
]
|
186
|
-
self.set_input_cols(input_cols=cols)
|
187
|
-
|
188
|
-
if not self.output_cols:
|
189
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
190
|
-
self.set_output_cols(output_cols=cols)
|
191
|
-
|
192
194
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "TransformedTargetRegressor":
|
193
195
|
"""
|
194
196
|
Input columns setter.
|
@@ -234,54 +236,48 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
234
236
|
self
|
235
237
|
"""
|
236
238
|
self._infer_input_output_cols(dataset)
|
237
|
-
if isinstance(dataset,
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
self.
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
239
|
+
if isinstance(dataset, DataFrame):
|
240
|
+
session = dataset._session
|
241
|
+
assert session is not None # keep mypy happy
|
242
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
243
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
244
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
245
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
246
|
+
|
247
|
+
# Specify input columns so column pruning will be enforced
|
248
|
+
selected_cols = self._get_active_columns()
|
249
|
+
if len(selected_cols) > 0:
|
250
|
+
dataset = dataset.select(selected_cols)
|
251
|
+
|
252
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
253
|
+
|
254
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
255
|
+
if SNOWML_SPROC_ENV in os.environ:
|
256
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
257
|
+
project=_PROJECT,
|
258
|
+
subproject=_SUBPROJECT,
|
259
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TransformedTargetRegressor.__class__.__name__),
|
260
|
+
api_calls=[Session.call],
|
261
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
262
|
+
)
|
263
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
264
|
+
pd_df.columns = dataset.columns
|
265
|
+
dataset = pd_df
|
266
|
+
|
267
|
+
model_trainer = ModelTrainerBuilder.build(
|
268
|
+
estimator=self._sklearn_object,
|
269
|
+
dataset=dataset,
|
270
|
+
input_cols=self.input_cols,
|
271
|
+
label_cols=self.label_cols,
|
272
|
+
sample_weight_col=self.sample_weight_col,
|
273
|
+
autogenerated=self._autogenerated,
|
274
|
+
subproject=_SUBPROJECT
|
275
|
+
)
|
276
|
+
self._sklearn_object = model_trainer.train()
|
253
277
|
self._is_fitted = True
|
254
278
|
self._get_model_signatures(dataset)
|
255
279
|
return self
|
256
280
|
|
257
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
258
|
-
session = dataset._session
|
259
|
-
assert session is not None # keep mypy happy
|
260
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
261
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
262
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
263
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
264
|
-
|
265
|
-
# Specify input columns so column pruning will be enforced
|
266
|
-
selected_cols = self._get_active_columns()
|
267
|
-
if len(selected_cols) > 0:
|
268
|
-
dataset = dataset.select(selected_cols)
|
269
|
-
|
270
|
-
estimator = self._sklearn_object
|
271
|
-
assert estimator is not None # Keep mypy happy
|
272
|
-
|
273
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
274
|
-
|
275
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
276
|
-
dataset,
|
277
|
-
session,
|
278
|
-
estimator,
|
279
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
280
|
-
self.input_cols,
|
281
|
-
self.label_cols,
|
282
|
-
self.sample_weight_col,
|
283
|
-
)
|
284
|
-
|
285
281
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
286
282
|
if self._drop_input_cols:
|
287
283
|
return []
|
@@ -469,11 +465,6 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
469
465
|
subproject=_SUBPROJECT,
|
470
466
|
custom_tags=dict([("autogen", True)]),
|
471
467
|
)
|
472
|
-
@telemetry.add_stmt_params_to_df(
|
473
|
-
project=_PROJECT,
|
474
|
-
subproject=_SUBPROJECT,
|
475
|
-
custom_tags=dict([("autogen", True)]),
|
476
|
-
)
|
477
468
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
478
469
|
"""Predict using the base regressor, applying inverse
|
479
470
|
For more details on this function, see [sklearn.compose.TransformedTargetRegressor.predict]
|
@@ -527,11 +518,6 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
527
518
|
subproject=_SUBPROJECT,
|
528
519
|
custom_tags=dict([("autogen", True)]),
|
529
520
|
)
|
530
|
-
@telemetry.add_stmt_params_to_df(
|
531
|
-
project=_PROJECT,
|
532
|
-
subproject=_SUBPROJECT,
|
533
|
-
custom_tags=dict([("autogen", True)]),
|
534
|
-
)
|
535
521
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
536
522
|
"""Method not supported for this class.
|
537
523
|
|
@@ -588,7 +574,8 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
588
574
|
if False:
|
589
575
|
self.fit(dataset)
|
590
576
|
assert self._sklearn_object is not None
|
591
|
-
|
577
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
578
|
+
return labels
|
592
579
|
else:
|
593
580
|
raise NotImplementedError
|
594
581
|
|
@@ -624,6 +611,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
624
611
|
output_cols = []
|
625
612
|
|
626
613
|
# Make sure column names are valid snowflake identifiers.
|
614
|
+
assert output_cols is not None # Make MyPy happy
|
627
615
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
628
616
|
|
629
617
|
return rv
|
@@ -634,11 +622,6 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
634
622
|
subproject=_SUBPROJECT,
|
635
623
|
custom_tags=dict([("autogen", True)]),
|
636
624
|
)
|
637
|
-
@telemetry.add_stmt_params_to_df(
|
638
|
-
project=_PROJECT,
|
639
|
-
subproject=_SUBPROJECT,
|
640
|
-
custom_tags=dict([("autogen", True)]),
|
641
|
-
)
|
642
625
|
def predict_proba(
|
643
626
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
644
627
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -679,11 +662,6 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
679
662
|
subproject=_SUBPROJECT,
|
680
663
|
custom_tags=dict([("autogen", True)]),
|
681
664
|
)
|
682
|
-
@telemetry.add_stmt_params_to_df(
|
683
|
-
project=_PROJECT,
|
684
|
-
subproject=_SUBPROJECT,
|
685
|
-
custom_tags=dict([("autogen", True)]),
|
686
|
-
)
|
687
665
|
def predict_log_proba(
|
688
666
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
689
667
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -720,16 +698,6 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
720
698
|
return output_df
|
721
699
|
|
722
700
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
723
|
-
@telemetry.send_api_usage_telemetry(
|
724
|
-
project=_PROJECT,
|
725
|
-
subproject=_SUBPROJECT,
|
726
|
-
custom_tags=dict([("autogen", True)]),
|
727
|
-
)
|
728
|
-
@telemetry.add_stmt_params_to_df(
|
729
|
-
project=_PROJECT,
|
730
|
-
subproject=_SUBPROJECT,
|
731
|
-
custom_tags=dict([("autogen", True)]),
|
732
|
-
)
|
733
701
|
def decision_function(
|
734
702
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
735
703
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -830,11 +798,6 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
830
798
|
subproject=_SUBPROJECT,
|
831
799
|
custom_tags=dict([("autogen", True)]),
|
832
800
|
)
|
833
|
-
@telemetry.add_stmt_params_to_df(
|
834
|
-
project=_PROJECT,
|
835
|
-
subproject=_SUBPROJECT,
|
836
|
-
custom_tags=dict([("autogen", True)]),
|
837
|
-
)
|
838
801
|
def kneighbors(
|
839
802
|
self,
|
840
803
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -894,18 +857,28 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
894
857
|
# For classifier, the type of predict is the same as the type of label
|
895
858
|
if self._sklearn_object._estimator_type == 'classifier':
|
896
859
|
# label columns is the desired type for output
|
897
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
860
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
898
861
|
# rename the output columns
|
899
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
862
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
900
863
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
901
864
|
([] if self._drop_input_cols else inputs)
|
902
865
|
+ outputs)
|
866
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
867
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
868
|
+
# Clusterer returns int64 cluster labels.
|
869
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
870
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
871
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
872
|
+
([] if self._drop_input_cols else inputs)
|
873
|
+
+ outputs)
|
874
|
+
|
903
875
|
# For regressor, the type of predict is float64
|
904
876
|
elif self._sklearn_object._estimator_type == 'regressor':
|
905
877
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
906
878
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
907
879
|
([] if self._drop_input_cols else inputs)
|
908
880
|
+ outputs)
|
881
|
+
|
909
882
|
for prob_func in PROB_FUNCTIONS:
|
910
883
|
if hasattr(self, prob_func):
|
911
884
|
output_cols_prefix: str = f"{prob_func}_"
|