snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class Perceptron(BaseTransformer):
57
58
  r"""Linear perceptron classifier
58
59
  For more details on this class, see [sklearn.linear_model.Perceptron]
@@ -61,6 +62,50 @@ class Perceptron(BaseTransformer):
61
62
  Parameters
62
63
  ----------
63
64
 
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
64
109
  penalty: {'l2','l1','elasticnet'}, default=None
65
110
  The penalty (aka regularization term) to be used.
66
111
 
@@ -137,35 +182,6 @@ class Perceptron(BaseTransformer):
137
182
  When set to True, reuse the solution of the previous call to fit as
138
183
  initialization, otherwise, just erase the previous solution. See
139
184
  :term:`the Glossary <warm_start>`.
140
-
141
- input_cols: Optional[Union[str, List[str]]]
142
- A string or list of strings representing column names that contain features.
143
- If this parameter is not specified, all columns in the input DataFrame except
144
- the columns specified by label_cols and sample_weight_col parameters are
145
- considered input columns.
146
-
147
- label_cols: Optional[Union[str, List[str]]]
148
- A string or list of strings representing column names that contain labels.
149
- This is a required param for estimators, as there is no way to infer these
150
- columns. If this parameter is not specified, then object is fitted without
151
- labels (like a transformer).
152
-
153
- output_cols: Optional[Union[str, List[str]]]
154
- A string or list of strings representing column names that will store the
155
- output of predict and transform operations. The length of output_cols must
156
- match the expected number of output columns from the specific estimator or
157
- transformer class used.
158
- If this parameter is not specified, output column names are derived by
159
- adding an OUTPUT_ prefix to the label column names. These inferred output
160
- column names work for estimator's predict() method, but output_cols must
161
- be set explicitly for transformers.
162
-
163
- sample_weight_col: Optional[str]
164
- A string representing the column name containing the sample weights.
165
- This argument is only required when working with weighted datasets.
166
-
167
- drop_input_cols: Optional[bool], default=False
168
- If set, the response of predict(), transform() methods will not contain input columns.
169
185
  """
170
186
 
171
187
  def __init__( # type: ignore[no-untyped-def]
@@ -190,6 +206,7 @@ class Perceptron(BaseTransformer):
190
206
  input_cols: Optional[Union[str, Iterable[str]]] = None,
191
207
  output_cols: Optional[Union[str, Iterable[str]]] = None,
192
208
  label_cols: Optional[Union[str, Iterable[str]]] = None,
209
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
193
210
  drop_input_cols: Optional[bool] = False,
194
211
  sample_weight_col: Optional[str] = None,
195
212
  ) -> None:
@@ -198,9 +215,10 @@ class Perceptron(BaseTransformer):
198
215
  self.set_input_cols(input_cols)
199
216
  self.set_output_cols(output_cols)
200
217
  self.set_label_cols(label_cols)
218
+ self.set_passthrough_cols(passthrough_cols)
201
219
  self.set_drop_input_cols(drop_input_cols)
202
220
  self.set_sample_weight_col(sample_weight_col)
203
- deps = set(SklearnWrapperProvider().dependencies)
221
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
204
222
 
205
223
  self._deps = list(deps)
206
224
 
@@ -224,13 +242,14 @@ class Perceptron(BaseTransformer):
224
242
  args=init_args,
225
243
  klass=sklearn.linear_model.Perceptron
226
244
  )
227
- self._sklearn_object = sklearn.linear_model.Perceptron(
245
+ self._sklearn_object: Any = sklearn.linear_model.Perceptron(
228
246
  **cleaned_up_init_args,
229
247
  )
230
248
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
231
249
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
232
250
  self._snowpark_cols: Optional[List[str]] = self.input_cols
233
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Perceptron.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
251
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=Perceptron.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
252
+ self._autogenerated = True
234
253
 
235
254
  def _get_rand_id(self) -> str:
236
255
  """
@@ -241,24 +260,6 @@ class Perceptron(BaseTransformer):
241
260
  """
242
261
  return str(uuid4()).replace("-", "_").upper()
243
262
 
244
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
245
- """
246
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
247
-
248
- Args:
249
- dataset: Input dataset.
250
- """
251
- if not self.input_cols:
252
- cols = [
253
- c for c in dataset.columns
254
- if c not in self.get_label_cols() and c != self.sample_weight_col
255
- ]
256
- self.set_input_cols(input_cols=cols)
257
-
258
- if not self.output_cols:
259
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
260
- self.set_output_cols(output_cols=cols)
261
-
262
263
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Perceptron":
263
264
  """
264
265
  Input columns setter.
@@ -304,54 +305,48 @@ class Perceptron(BaseTransformer):
304
305
  self
305
306
  """
306
307
  self._infer_input_output_cols(dataset)
307
- if isinstance(dataset, pd.DataFrame):
308
- assert self._sklearn_object is not None # keep mypy happy
309
- self._sklearn_object = self._handlers.fit_pandas(
310
- dataset,
311
- self._sklearn_object,
312
- self.input_cols,
313
- self.label_cols,
314
- self.sample_weight_col
315
- )
316
- elif isinstance(dataset, DataFrame):
317
- self._fit_snowpark(dataset)
318
- else:
319
- raise TypeError(
320
- f"Unexpected dataset type: {type(dataset)}."
321
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
322
- )
308
+ if isinstance(dataset, DataFrame):
309
+ session = dataset._session
310
+ assert session is not None # keep mypy happy
311
+ # Validate that key package version in user workspace are supported in snowflake conda channel
312
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
313
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
314
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
315
+
316
+ # Specify input columns so column pruning will be enforced
317
+ selected_cols = self._get_active_columns()
318
+ if len(selected_cols) > 0:
319
+ dataset = dataset.select(selected_cols)
320
+
321
+ self._snowpark_cols = dataset.select(self.input_cols).columns
322
+
323
+ # If we are already in a stored procedure, no need to kick off another one.
324
+ if SNOWML_SPROC_ENV in os.environ:
325
+ statement_params = telemetry.get_function_usage_statement_params(
326
+ project=_PROJECT,
327
+ subproject=_SUBPROJECT,
328
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Perceptron.__class__.__name__),
329
+ api_calls=[Session.call],
330
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
331
+ )
332
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
333
+ pd_df.columns = dataset.columns
334
+ dataset = pd_df
335
+
336
+ model_trainer = ModelTrainerBuilder.build(
337
+ estimator=self._sklearn_object,
338
+ dataset=dataset,
339
+ input_cols=self.input_cols,
340
+ label_cols=self.label_cols,
341
+ sample_weight_col=self.sample_weight_col,
342
+ autogenerated=self._autogenerated,
343
+ subproject=_SUBPROJECT
344
+ )
345
+ self._sklearn_object = model_trainer.train()
323
346
  self._is_fitted = True
324
347
  self._get_model_signatures(dataset)
325
348
  return self
326
349
 
327
- def _fit_snowpark(self, dataset: DataFrame) -> None:
328
- session = dataset._session
329
- assert session is not None # keep mypy happy
330
- # Validate that key package version in user workspace are supported in snowflake conda channel
331
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
332
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
333
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
334
-
335
- # Specify input columns so column pruning will be enforced
336
- selected_cols = self._get_active_columns()
337
- if len(selected_cols) > 0:
338
- dataset = dataset.select(selected_cols)
339
-
340
- estimator = self._sklearn_object
341
- assert estimator is not None # Keep mypy happy
342
-
343
- self._snowpark_cols = dataset.select(self.input_cols).columns
344
-
345
- self._sklearn_object = self._handlers.fit_snowpark(
346
- dataset,
347
- session,
348
- estimator,
349
- ["snowflake-snowpark-python"] + self._get_dependencies(),
350
- self.input_cols,
351
- self.label_cols,
352
- self.sample_weight_col,
353
- )
354
-
355
350
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
356
351
  if self._drop_input_cols:
357
352
  return []
@@ -539,11 +534,6 @@ class Perceptron(BaseTransformer):
539
534
  subproject=_SUBPROJECT,
540
535
  custom_tags=dict([("autogen", True)]),
541
536
  )
542
- @telemetry.add_stmt_params_to_df(
543
- project=_PROJECT,
544
- subproject=_SUBPROJECT,
545
- custom_tags=dict([("autogen", True)]),
546
- )
547
537
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
548
538
  """Predict class labels for samples in X
549
539
  For more details on this function, see [sklearn.linear_model.Perceptron.predict]
@@ -597,11 +587,6 @@ class Perceptron(BaseTransformer):
597
587
  subproject=_SUBPROJECT,
598
588
  custom_tags=dict([("autogen", True)]),
599
589
  )
600
- @telemetry.add_stmt_params_to_df(
601
- project=_PROJECT,
602
- subproject=_SUBPROJECT,
603
- custom_tags=dict([("autogen", True)]),
604
- )
605
590
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
606
591
  """Method not supported for this class.
607
592
 
@@ -658,7 +643,8 @@ class Perceptron(BaseTransformer):
658
643
  if False:
659
644
  self.fit(dataset)
660
645
  assert self._sklearn_object is not None
661
- return self._sklearn_object.labels_
646
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
647
+ return labels
662
648
  else:
663
649
  raise NotImplementedError
664
650
 
@@ -694,6 +680,7 @@ class Perceptron(BaseTransformer):
694
680
  output_cols = []
695
681
 
696
682
  # Make sure column names are valid snowflake identifiers.
683
+ assert output_cols is not None # Make MyPy happy
697
684
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
698
685
 
699
686
  return rv
@@ -704,11 +691,6 @@ class Perceptron(BaseTransformer):
704
691
  subproject=_SUBPROJECT,
705
692
  custom_tags=dict([("autogen", True)]),
706
693
  )
707
- @telemetry.add_stmt_params_to_df(
708
- project=_PROJECT,
709
- subproject=_SUBPROJECT,
710
- custom_tags=dict([("autogen", True)]),
711
- )
712
694
  def predict_proba(
713
695
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
714
696
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -749,11 +731,6 @@ class Perceptron(BaseTransformer):
749
731
  subproject=_SUBPROJECT,
750
732
  custom_tags=dict([("autogen", True)]),
751
733
  )
752
- @telemetry.add_stmt_params_to_df(
753
- project=_PROJECT,
754
- subproject=_SUBPROJECT,
755
- custom_tags=dict([("autogen", True)]),
756
- )
757
734
  def predict_log_proba(
758
735
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
759
736
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -790,16 +767,6 @@ class Perceptron(BaseTransformer):
790
767
  return output_df
791
768
 
792
769
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
793
- @telemetry.send_api_usage_telemetry(
794
- project=_PROJECT,
795
- subproject=_SUBPROJECT,
796
- custom_tags=dict([("autogen", True)]),
797
- )
798
- @telemetry.add_stmt_params_to_df(
799
- project=_PROJECT,
800
- subproject=_SUBPROJECT,
801
- custom_tags=dict([("autogen", True)]),
802
- )
803
770
  def decision_function(
804
771
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
805
772
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -902,11 +869,6 @@ class Perceptron(BaseTransformer):
902
869
  subproject=_SUBPROJECT,
903
870
  custom_tags=dict([("autogen", True)]),
904
871
  )
905
- @telemetry.add_stmt_params_to_df(
906
- project=_PROJECT,
907
- subproject=_SUBPROJECT,
908
- custom_tags=dict([("autogen", True)]),
909
- )
910
872
  def kneighbors(
911
873
  self,
912
874
  dataset: Union[DataFrame, pd.DataFrame],
@@ -966,18 +928,28 @@ class Perceptron(BaseTransformer):
966
928
  # For classifier, the type of predict is the same as the type of label
967
929
  if self._sklearn_object._estimator_type == 'classifier':
968
930
  # label columns is the desired type for output
969
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
931
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
970
932
  # rename the output columns
971
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
933
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
934
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
935
+ ([] if self._drop_input_cols else inputs)
936
+ + outputs)
937
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
938
+ # For outlier models, returns -1 for outliers and 1 for inliers.
939
+ # Clusterer returns int64 cluster labels.
940
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
941
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
972
942
  self._model_signature_dict["predict"] = ModelSignature(inputs,
973
943
  ([] if self._drop_input_cols else inputs)
974
944
  + outputs)
945
+
975
946
  # For regressor, the type of predict is float64
976
947
  elif self._sklearn_object._estimator_type == 'regressor':
977
948
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
978
949
  self._model_signature_dict["predict"] = ModelSignature(inputs,
979
950
  ([] if self._drop_input_cols else inputs)
980
951
  + outputs)
952
+
981
953
  for prob_func in PROB_FUNCTIONS:
982
954
  if hasattr(self, prob_func):
983
955
  output_cols_prefix: str = f"{prob_func}_"