snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class AdditiveChi2Sampler(BaseTransformer):
57
58
  r"""Approximate feature map for additive chi2 kernel
58
59
  For more details on this class, see [sklearn.kernel_approximation.AdditiveChi2Sampler]
@@ -60,40 +61,54 @@ class AdditiveChi2Sampler(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- sample_steps: int, default=2
64
- Gives the number of (complex) sampling points.
65
-
66
- sample_interval: float, default=None
67
- Sampling interval. Must be specified when sample_steps not in {1,2,3}.
68
64
 
69
65
  input_cols: Optional[Union[str, List[str]]]
70
66
  A string or list of strings representing column names that contain features.
71
67
  If this parameter is not specified, all columns in the input DataFrame except
72
- the columns specified by label_cols and sample_weight_col parameters are
73
- considered input columns.
74
-
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
75
72
  label_cols: Optional[Union[str, List[str]]]
76
- A string or list of strings representing column names that contain labels.
77
- This is a required param for estimators, as there is no way to infer these
78
- columns. If this parameter is not specified, then object is fitted without
79
- labels (like a transformer).
80
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
81
75
  output_cols: Optional[Union[str, List[str]]]
82
76
  A string or list of strings representing column names that will store the
83
77
  output of predict and transform operations. The length of output_cols must
84
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
85
79
  transformer class used.
86
- If this parameter is not specified, output column names are derived by
87
- adding an OUTPUT_ prefix to the label column names. These inferred output
88
- column names work for estimator's predict() method, but output_cols must
89
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
90
89
 
91
90
  sample_weight_col: Optional[str]
92
91
  A string representing the column name containing the sample weights.
93
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
94
103
 
95
104
  drop_input_cols: Optional[bool], default=False
96
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ sample_steps: int, default=2
108
+ Gives the number of (complex) sampling points.
109
+
110
+ sample_interval: float, default=None
111
+ Sampling interval. Must be specified when sample_steps not in {1,2,3}.
97
112
  """
98
113
 
99
114
  def __init__( # type: ignore[no-untyped-def]
@@ -104,6 +119,7 @@ class AdditiveChi2Sampler(BaseTransformer):
104
119
  input_cols: Optional[Union[str, Iterable[str]]] = None,
105
120
  output_cols: Optional[Union[str, Iterable[str]]] = None,
106
121
  label_cols: Optional[Union[str, Iterable[str]]] = None,
122
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
107
123
  drop_input_cols: Optional[bool] = False,
108
124
  sample_weight_col: Optional[str] = None,
109
125
  ) -> None:
@@ -112,9 +128,10 @@ class AdditiveChi2Sampler(BaseTransformer):
112
128
  self.set_input_cols(input_cols)
113
129
  self.set_output_cols(output_cols)
114
130
  self.set_label_cols(label_cols)
131
+ self.set_passthrough_cols(passthrough_cols)
115
132
  self.set_drop_input_cols(drop_input_cols)
116
133
  self.set_sample_weight_col(sample_weight_col)
117
- deps = set(SklearnWrapperProvider().dependencies)
134
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
118
135
 
119
136
  self._deps = list(deps)
120
137
 
@@ -124,13 +141,14 @@ class AdditiveChi2Sampler(BaseTransformer):
124
141
  args=init_args,
125
142
  klass=sklearn.kernel_approximation.AdditiveChi2Sampler
126
143
  )
127
- self._sklearn_object = sklearn.kernel_approximation.AdditiveChi2Sampler(
144
+ self._sklearn_object: Any = sklearn.kernel_approximation.AdditiveChi2Sampler(
128
145
  **cleaned_up_init_args,
129
146
  )
130
147
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
131
148
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
132
149
  self._snowpark_cols: Optional[List[str]] = self.input_cols
133
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdditiveChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
150
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdditiveChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
151
+ self._autogenerated = True
134
152
 
135
153
  def _get_rand_id(self) -> str:
136
154
  """
@@ -141,24 +159,6 @@ class AdditiveChi2Sampler(BaseTransformer):
141
159
  """
142
160
  return str(uuid4()).replace("-", "_").upper()
143
161
 
144
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
145
- """
146
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
147
-
148
- Args:
149
- dataset: Input dataset.
150
- """
151
- if not self.input_cols:
152
- cols = [
153
- c for c in dataset.columns
154
- if c not in self.get_label_cols() and c != self.sample_weight_col
155
- ]
156
- self.set_input_cols(input_cols=cols)
157
-
158
- if not self.output_cols:
159
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
160
- self.set_output_cols(output_cols=cols)
161
-
162
162
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "AdditiveChi2Sampler":
163
163
  """
164
164
  Input columns setter.
@@ -204,54 +204,48 @@ class AdditiveChi2Sampler(BaseTransformer):
204
204
  self
205
205
  """
206
206
  self._infer_input_output_cols(dataset)
207
- if isinstance(dataset, pd.DataFrame):
208
- assert self._sklearn_object is not None # keep mypy happy
209
- self._sklearn_object = self._handlers.fit_pandas(
210
- dataset,
211
- self._sklearn_object,
212
- self.input_cols,
213
- self.label_cols,
214
- self.sample_weight_col
215
- )
216
- elif isinstance(dataset, DataFrame):
217
- self._fit_snowpark(dataset)
218
- else:
219
- raise TypeError(
220
- f"Unexpected dataset type: {type(dataset)}."
221
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
222
- )
207
+ if isinstance(dataset, DataFrame):
208
+ session = dataset._session
209
+ assert session is not None # keep mypy happy
210
+ # Validate that key package version in user workspace are supported in snowflake conda channel
211
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
212
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
213
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
214
+
215
+ # Specify input columns so column pruning will be enforced
216
+ selected_cols = self._get_active_columns()
217
+ if len(selected_cols) > 0:
218
+ dataset = dataset.select(selected_cols)
219
+
220
+ self._snowpark_cols = dataset.select(self.input_cols).columns
221
+
222
+ # If we are already in a stored procedure, no need to kick off another one.
223
+ if SNOWML_SPROC_ENV in os.environ:
224
+ statement_params = telemetry.get_function_usage_statement_params(
225
+ project=_PROJECT,
226
+ subproject=_SUBPROJECT,
227
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AdditiveChi2Sampler.__class__.__name__),
228
+ api_calls=[Session.call],
229
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
230
+ )
231
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
232
+ pd_df.columns = dataset.columns
233
+ dataset = pd_df
234
+
235
+ model_trainer = ModelTrainerBuilder.build(
236
+ estimator=self._sklearn_object,
237
+ dataset=dataset,
238
+ input_cols=self.input_cols,
239
+ label_cols=self.label_cols,
240
+ sample_weight_col=self.sample_weight_col,
241
+ autogenerated=self._autogenerated,
242
+ subproject=_SUBPROJECT
243
+ )
244
+ self._sklearn_object = model_trainer.train()
223
245
  self._is_fitted = True
224
246
  self._get_model_signatures(dataset)
225
247
  return self
226
248
 
227
- def _fit_snowpark(self, dataset: DataFrame) -> None:
228
- session = dataset._session
229
- assert session is not None # keep mypy happy
230
- # Validate that key package version in user workspace are supported in snowflake conda channel
231
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
232
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
233
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
234
-
235
- # Specify input columns so column pruning will be enforced
236
- selected_cols = self._get_active_columns()
237
- if len(selected_cols) > 0:
238
- dataset = dataset.select(selected_cols)
239
-
240
- estimator = self._sklearn_object
241
- assert estimator is not None # Keep mypy happy
242
-
243
- self._snowpark_cols = dataset.select(self.input_cols).columns
244
-
245
- self._sklearn_object = self._handlers.fit_snowpark(
246
- dataset,
247
- session,
248
- estimator,
249
- ["snowflake-snowpark-python"] + self._get_dependencies(),
250
- self.input_cols,
251
- self.label_cols,
252
- self.sample_weight_col,
253
- )
254
-
255
249
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
256
250
  if self._drop_input_cols:
257
251
  return []
@@ -439,11 +433,6 @@ class AdditiveChi2Sampler(BaseTransformer):
439
433
  subproject=_SUBPROJECT,
440
434
  custom_tags=dict([("autogen", True)]),
441
435
  )
442
- @telemetry.add_stmt_params_to_df(
443
- project=_PROJECT,
444
- subproject=_SUBPROJECT,
445
- custom_tags=dict([("autogen", True)]),
446
- )
447
436
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
448
437
  """Method not supported for this class.
449
438
 
@@ -495,11 +484,6 @@ class AdditiveChi2Sampler(BaseTransformer):
495
484
  subproject=_SUBPROJECT,
496
485
  custom_tags=dict([("autogen", True)]),
497
486
  )
498
- @telemetry.add_stmt_params_to_df(
499
- project=_PROJECT,
500
- subproject=_SUBPROJECT,
501
- custom_tags=dict([("autogen", True)]),
502
- )
503
487
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
504
488
  """Apply approximate feature map to X
505
489
  For more details on this function, see [sklearn.kernel_approximation.AdditiveChi2Sampler.transform]
@@ -558,7 +542,8 @@ class AdditiveChi2Sampler(BaseTransformer):
558
542
  if False:
559
543
  self.fit(dataset)
560
544
  assert self._sklearn_object is not None
561
- return self._sklearn_object.labels_
545
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
546
+ return labels
562
547
  else:
563
548
  raise NotImplementedError
564
549
 
@@ -594,6 +579,7 @@ class AdditiveChi2Sampler(BaseTransformer):
594
579
  output_cols = []
595
580
 
596
581
  # Make sure column names are valid snowflake identifiers.
582
+ assert output_cols is not None # Make MyPy happy
597
583
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
598
584
 
599
585
  return rv
@@ -604,11 +590,6 @@ class AdditiveChi2Sampler(BaseTransformer):
604
590
  subproject=_SUBPROJECT,
605
591
  custom_tags=dict([("autogen", True)]),
606
592
  )
607
- @telemetry.add_stmt_params_to_df(
608
- project=_PROJECT,
609
- subproject=_SUBPROJECT,
610
- custom_tags=dict([("autogen", True)]),
611
- )
612
593
  def predict_proba(
613
594
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
614
595
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -649,11 +630,6 @@ class AdditiveChi2Sampler(BaseTransformer):
649
630
  subproject=_SUBPROJECT,
650
631
  custom_tags=dict([("autogen", True)]),
651
632
  )
652
- @telemetry.add_stmt_params_to_df(
653
- project=_PROJECT,
654
- subproject=_SUBPROJECT,
655
- custom_tags=dict([("autogen", True)]),
656
- )
657
633
  def predict_log_proba(
658
634
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
659
635
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -690,16 +666,6 @@ class AdditiveChi2Sampler(BaseTransformer):
690
666
  return output_df
691
667
 
692
668
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
693
- @telemetry.send_api_usage_telemetry(
694
- project=_PROJECT,
695
- subproject=_SUBPROJECT,
696
- custom_tags=dict([("autogen", True)]),
697
- )
698
- @telemetry.add_stmt_params_to_df(
699
- project=_PROJECT,
700
- subproject=_SUBPROJECT,
701
- custom_tags=dict([("autogen", True)]),
702
- )
703
669
  def decision_function(
704
670
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
705
671
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -798,11 +764,6 @@ class AdditiveChi2Sampler(BaseTransformer):
798
764
  subproject=_SUBPROJECT,
799
765
  custom_tags=dict([("autogen", True)]),
800
766
  )
801
- @telemetry.add_stmt_params_to_df(
802
- project=_PROJECT,
803
- subproject=_SUBPROJECT,
804
- custom_tags=dict([("autogen", True)]),
805
- )
806
767
  def kneighbors(
807
768
  self,
808
769
  dataset: Union[DataFrame, pd.DataFrame],
@@ -862,18 +823,28 @@ class AdditiveChi2Sampler(BaseTransformer):
862
823
  # For classifier, the type of predict is the same as the type of label
863
824
  if self._sklearn_object._estimator_type == 'classifier':
864
825
  # label columns is the desired type for output
865
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
826
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
866
827
  # rename the output columns
867
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
828
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
868
829
  self._model_signature_dict["predict"] = ModelSignature(inputs,
869
830
  ([] if self._drop_input_cols else inputs)
870
831
  + outputs)
832
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
833
+ # For outlier models, returns -1 for outliers and 1 for inliers.
834
+ # Clusterer returns int64 cluster labels.
835
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
836
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
837
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
838
+ ([] if self._drop_input_cols else inputs)
839
+ + outputs)
840
+
871
841
  # For regressor, the type of predict is float64
872
842
  elif self._sklearn_object._estimator_type == 'regressor':
873
843
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
874
844
  self._model_signature_dict["predict"] = ModelSignature(inputs,
875
845
  ([] if self._drop_input_cols else inputs)
876
846
  + outputs)
847
+
877
848
  for prob_func in PROB_FUNCTIONS:
878
849
  if hasattr(self, prob_func):
879
850
  output_cols_prefix: str = f"{prob_func}_"