snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class AdditiveChi2Sampler(BaseTransformer):
|
57
58
|
r"""Approximate feature map for additive chi2 kernel
|
58
59
|
For more details on this class, see [sklearn.kernel_approximation.AdditiveChi2Sampler]
|
@@ -60,40 +61,54 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
sample_steps: int, default=2
|
64
|
-
Gives the number of (complex) sampling points.
|
65
|
-
|
66
|
-
sample_interval: float, default=None
|
67
|
-
Sampling interval. Must be specified when sample_steps not in {1,2,3}.
|
68
64
|
|
69
65
|
input_cols: Optional[Union[str, List[str]]]
|
70
66
|
A string or list of strings representing column names that contain features.
|
71
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
72
|
-
the columns specified by label_cols
|
73
|
-
considered input columns.
|
74
|
-
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
75
72
|
label_cols: Optional[Union[str, List[str]]]
|
76
|
-
|
77
|
-
|
78
|
-
columns. If this parameter is not specified, then object is fitted without
|
79
|
-
labels (like a transformer).
|
80
|
-
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
81
75
|
output_cols: Optional[Union[str, List[str]]]
|
82
76
|
A string or list of strings representing column names that will store the
|
83
77
|
output of predict and transform operations. The length of output_cols must
|
84
|
-
match the expected number of output columns from the specific
|
78
|
+
match the expected number of output columns from the specific predictor or
|
85
79
|
transformer class used.
|
86
|
-
If this parameter
|
87
|
-
|
88
|
-
|
89
|
-
be set explicitly for transformers.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
90
89
|
|
91
90
|
sample_weight_col: Optional[str]
|
92
91
|
A string representing the column name containing the sample weights.
|
93
|
-
This argument is only required when working with weighted datasets.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
94
103
|
|
95
104
|
drop_input_cols: Optional[bool], default=False
|
96
105
|
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
107
|
+
sample_steps: int, default=2
|
108
|
+
Gives the number of (complex) sampling points.
|
109
|
+
|
110
|
+
sample_interval: float, default=None
|
111
|
+
Sampling interval. Must be specified when sample_steps not in {1,2,3}.
|
97
112
|
"""
|
98
113
|
|
99
114
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -104,6 +119,7 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
104
119
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
105
120
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
106
121
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
122
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
107
123
|
drop_input_cols: Optional[bool] = False,
|
108
124
|
sample_weight_col: Optional[str] = None,
|
109
125
|
) -> None:
|
@@ -112,9 +128,10 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
112
128
|
self.set_input_cols(input_cols)
|
113
129
|
self.set_output_cols(output_cols)
|
114
130
|
self.set_label_cols(label_cols)
|
131
|
+
self.set_passthrough_cols(passthrough_cols)
|
115
132
|
self.set_drop_input_cols(drop_input_cols)
|
116
133
|
self.set_sample_weight_col(sample_weight_col)
|
117
|
-
deps = set(
|
134
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
118
135
|
|
119
136
|
self._deps = list(deps)
|
120
137
|
|
@@ -124,13 +141,14 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
124
141
|
args=init_args,
|
125
142
|
klass=sklearn.kernel_approximation.AdditiveChi2Sampler
|
126
143
|
)
|
127
|
-
self._sklearn_object = sklearn.kernel_approximation.AdditiveChi2Sampler(
|
144
|
+
self._sklearn_object: Any = sklearn.kernel_approximation.AdditiveChi2Sampler(
|
128
145
|
**cleaned_up_init_args,
|
129
146
|
)
|
130
147
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
131
148
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
132
149
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
133
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdditiveChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
150
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdditiveChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
151
|
+
self._autogenerated = True
|
134
152
|
|
135
153
|
def _get_rand_id(self) -> str:
|
136
154
|
"""
|
@@ -141,24 +159,6 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
141
159
|
"""
|
142
160
|
return str(uuid4()).replace("-", "_").upper()
|
143
161
|
|
144
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
145
|
-
"""
|
146
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
147
|
-
|
148
|
-
Args:
|
149
|
-
dataset: Input dataset.
|
150
|
-
"""
|
151
|
-
if not self.input_cols:
|
152
|
-
cols = [
|
153
|
-
c for c in dataset.columns
|
154
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
155
|
-
]
|
156
|
-
self.set_input_cols(input_cols=cols)
|
157
|
-
|
158
|
-
if not self.output_cols:
|
159
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
160
|
-
self.set_output_cols(output_cols=cols)
|
161
|
-
|
162
162
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "AdditiveChi2Sampler":
|
163
163
|
"""
|
164
164
|
Input columns setter.
|
@@ -204,54 +204,48 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
204
204
|
self
|
205
205
|
"""
|
206
206
|
self._infer_input_output_cols(dataset)
|
207
|
-
if isinstance(dataset,
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
self.
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
207
|
+
if isinstance(dataset, DataFrame):
|
208
|
+
session = dataset._session
|
209
|
+
assert session is not None # keep mypy happy
|
210
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
211
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
212
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
213
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
214
|
+
|
215
|
+
# Specify input columns so column pruning will be enforced
|
216
|
+
selected_cols = self._get_active_columns()
|
217
|
+
if len(selected_cols) > 0:
|
218
|
+
dataset = dataset.select(selected_cols)
|
219
|
+
|
220
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
221
|
+
|
222
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
223
|
+
if SNOWML_SPROC_ENV in os.environ:
|
224
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
225
|
+
project=_PROJECT,
|
226
|
+
subproject=_SUBPROJECT,
|
227
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AdditiveChi2Sampler.__class__.__name__),
|
228
|
+
api_calls=[Session.call],
|
229
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
230
|
+
)
|
231
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
232
|
+
pd_df.columns = dataset.columns
|
233
|
+
dataset = pd_df
|
234
|
+
|
235
|
+
model_trainer = ModelTrainerBuilder.build(
|
236
|
+
estimator=self._sklearn_object,
|
237
|
+
dataset=dataset,
|
238
|
+
input_cols=self.input_cols,
|
239
|
+
label_cols=self.label_cols,
|
240
|
+
sample_weight_col=self.sample_weight_col,
|
241
|
+
autogenerated=self._autogenerated,
|
242
|
+
subproject=_SUBPROJECT
|
243
|
+
)
|
244
|
+
self._sklearn_object = model_trainer.train()
|
223
245
|
self._is_fitted = True
|
224
246
|
self._get_model_signatures(dataset)
|
225
247
|
return self
|
226
248
|
|
227
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
228
|
-
session = dataset._session
|
229
|
-
assert session is not None # keep mypy happy
|
230
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
231
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
232
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
233
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
234
|
-
|
235
|
-
# Specify input columns so column pruning will be enforced
|
236
|
-
selected_cols = self._get_active_columns()
|
237
|
-
if len(selected_cols) > 0:
|
238
|
-
dataset = dataset.select(selected_cols)
|
239
|
-
|
240
|
-
estimator = self._sklearn_object
|
241
|
-
assert estimator is not None # Keep mypy happy
|
242
|
-
|
243
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
244
|
-
|
245
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
246
|
-
dataset,
|
247
|
-
session,
|
248
|
-
estimator,
|
249
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
250
|
-
self.input_cols,
|
251
|
-
self.label_cols,
|
252
|
-
self.sample_weight_col,
|
253
|
-
)
|
254
|
-
|
255
249
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
256
250
|
if self._drop_input_cols:
|
257
251
|
return []
|
@@ -439,11 +433,6 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
439
433
|
subproject=_SUBPROJECT,
|
440
434
|
custom_tags=dict([("autogen", True)]),
|
441
435
|
)
|
442
|
-
@telemetry.add_stmt_params_to_df(
|
443
|
-
project=_PROJECT,
|
444
|
-
subproject=_SUBPROJECT,
|
445
|
-
custom_tags=dict([("autogen", True)]),
|
446
|
-
)
|
447
436
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
448
437
|
"""Method not supported for this class.
|
449
438
|
|
@@ -495,11 +484,6 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
495
484
|
subproject=_SUBPROJECT,
|
496
485
|
custom_tags=dict([("autogen", True)]),
|
497
486
|
)
|
498
|
-
@telemetry.add_stmt_params_to_df(
|
499
|
-
project=_PROJECT,
|
500
|
-
subproject=_SUBPROJECT,
|
501
|
-
custom_tags=dict([("autogen", True)]),
|
502
|
-
)
|
503
487
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
504
488
|
"""Apply approximate feature map to X
|
505
489
|
For more details on this function, see [sklearn.kernel_approximation.AdditiveChi2Sampler.transform]
|
@@ -558,7 +542,8 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
558
542
|
if False:
|
559
543
|
self.fit(dataset)
|
560
544
|
assert self._sklearn_object is not None
|
561
|
-
|
545
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
546
|
+
return labels
|
562
547
|
else:
|
563
548
|
raise NotImplementedError
|
564
549
|
|
@@ -594,6 +579,7 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
594
579
|
output_cols = []
|
595
580
|
|
596
581
|
# Make sure column names are valid snowflake identifiers.
|
582
|
+
assert output_cols is not None # Make MyPy happy
|
597
583
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
598
584
|
|
599
585
|
return rv
|
@@ -604,11 +590,6 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
604
590
|
subproject=_SUBPROJECT,
|
605
591
|
custom_tags=dict([("autogen", True)]),
|
606
592
|
)
|
607
|
-
@telemetry.add_stmt_params_to_df(
|
608
|
-
project=_PROJECT,
|
609
|
-
subproject=_SUBPROJECT,
|
610
|
-
custom_tags=dict([("autogen", True)]),
|
611
|
-
)
|
612
593
|
def predict_proba(
|
613
594
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
614
595
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -649,11 +630,6 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
649
630
|
subproject=_SUBPROJECT,
|
650
631
|
custom_tags=dict([("autogen", True)]),
|
651
632
|
)
|
652
|
-
@telemetry.add_stmt_params_to_df(
|
653
|
-
project=_PROJECT,
|
654
|
-
subproject=_SUBPROJECT,
|
655
|
-
custom_tags=dict([("autogen", True)]),
|
656
|
-
)
|
657
633
|
def predict_log_proba(
|
658
634
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
659
635
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -690,16 +666,6 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
690
666
|
return output_df
|
691
667
|
|
692
668
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
693
|
-
@telemetry.send_api_usage_telemetry(
|
694
|
-
project=_PROJECT,
|
695
|
-
subproject=_SUBPROJECT,
|
696
|
-
custom_tags=dict([("autogen", True)]),
|
697
|
-
)
|
698
|
-
@telemetry.add_stmt_params_to_df(
|
699
|
-
project=_PROJECT,
|
700
|
-
subproject=_SUBPROJECT,
|
701
|
-
custom_tags=dict([("autogen", True)]),
|
702
|
-
)
|
703
669
|
def decision_function(
|
704
670
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
705
671
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -798,11 +764,6 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
798
764
|
subproject=_SUBPROJECT,
|
799
765
|
custom_tags=dict([("autogen", True)]),
|
800
766
|
)
|
801
|
-
@telemetry.add_stmt_params_to_df(
|
802
|
-
project=_PROJECT,
|
803
|
-
subproject=_SUBPROJECT,
|
804
|
-
custom_tags=dict([("autogen", True)]),
|
805
|
-
)
|
806
767
|
def kneighbors(
|
807
768
|
self,
|
808
769
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -862,18 +823,28 @@ class AdditiveChi2Sampler(BaseTransformer):
|
|
862
823
|
# For classifier, the type of predict is the same as the type of label
|
863
824
|
if self._sklearn_object._estimator_type == 'classifier':
|
864
825
|
# label columns is the desired type for output
|
865
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
826
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
866
827
|
# rename the output columns
|
867
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
828
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
868
829
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
869
830
|
([] if self._drop_input_cols else inputs)
|
870
831
|
+ outputs)
|
832
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
833
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
834
|
+
# Clusterer returns int64 cluster labels.
|
835
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
836
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
837
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
838
|
+
([] if self._drop_input_cols else inputs)
|
839
|
+
+ outputs)
|
840
|
+
|
871
841
|
# For regressor, the type of predict is float64
|
872
842
|
elif self._sklearn_object._estimator_type == 'regressor':
|
873
843
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
874
844
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
875
845
|
([] if self._drop_input_cols else inputs)
|
876
846
|
+ outputs)
|
847
|
+
|
877
848
|
for prob_func in PROB_FUNCTIONS:
|
878
849
|
if hasattr(self, prob_func):
|
879
850
|
output_cols_prefix: str = f"{prob_func}_"
|