snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class HistGradientBoostingRegressor(BaseTransformer):
57
58
  r"""Histogram-based Gradient Boosting Regression Tree
58
59
  For more details on this class, see [sklearn.ensemble.HistGradientBoostingRegressor]
@@ -60,6 +61,51 @@ class HistGradientBoostingRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  loss: {'squared_error', 'absolute_error', 'gamma', 'poisson', 'quantile'}, default='squared_error'
64
110
  The loss function to use in the boosting process. Note that the
65
111
  "squared error", "gamma" and "poisson" losses actually implement
@@ -191,35 +237,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
191
237
  is enabled.
192
238
  Pass an int for reproducible output across multiple function calls.
193
239
  See :term:`Glossary <random_state>`.
194
-
195
- input_cols: Optional[Union[str, List[str]]]
196
- A string or list of strings representing column names that contain features.
197
- If this parameter is not specified, all columns in the input DataFrame except
198
- the columns specified by label_cols and sample_weight_col parameters are
199
- considered input columns.
200
-
201
- label_cols: Optional[Union[str, List[str]]]
202
- A string or list of strings representing column names that contain labels.
203
- This is a required param for estimators, as there is no way to infer these
204
- columns. If this parameter is not specified, then object is fitted without
205
- labels (like a transformer).
206
-
207
- output_cols: Optional[Union[str, List[str]]]
208
- A string or list of strings representing column names that will store the
209
- output of predict and transform operations. The length of output_cols must
210
- match the expected number of output columns from the specific estimator or
211
- transformer class used.
212
- If this parameter is not specified, output column names are derived by
213
- adding an OUTPUT_ prefix to the label column names. These inferred output
214
- column names work for estimator's predict() method, but output_cols must
215
- be set explicitly for transformers.
216
-
217
- sample_weight_col: Optional[str]
218
- A string representing the column name containing the sample weights.
219
- This argument is only required when working with weighted datasets.
220
-
221
- drop_input_cols: Optional[bool], default=False
222
- If set, the response of predict(), transform() methods will not contain input columns.
223
240
  """
224
241
 
225
242
  def __init__( # type: ignore[no-untyped-def]
@@ -248,6 +265,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
248
265
  input_cols: Optional[Union[str, Iterable[str]]] = None,
249
266
  output_cols: Optional[Union[str, Iterable[str]]] = None,
250
267
  label_cols: Optional[Union[str, Iterable[str]]] = None,
268
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
251
269
  drop_input_cols: Optional[bool] = False,
252
270
  sample_weight_col: Optional[str] = None,
253
271
  ) -> None:
@@ -256,9 +274,10 @@ class HistGradientBoostingRegressor(BaseTransformer):
256
274
  self.set_input_cols(input_cols)
257
275
  self.set_output_cols(output_cols)
258
276
  self.set_label_cols(label_cols)
277
+ self.set_passthrough_cols(passthrough_cols)
259
278
  self.set_drop_input_cols(drop_input_cols)
260
279
  self.set_sample_weight_col(sample_weight_col)
261
- deps = set(SklearnWrapperProvider().dependencies)
280
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
262
281
 
263
282
  self._deps = list(deps)
264
283
 
@@ -286,13 +305,14 @@ class HistGradientBoostingRegressor(BaseTransformer):
286
305
  args=init_args,
287
306
  klass=sklearn.ensemble.HistGradientBoostingRegressor
288
307
  )
289
- self._sklearn_object = sklearn.ensemble.HistGradientBoostingRegressor(
308
+ self._sklearn_object: Any = sklearn.ensemble.HistGradientBoostingRegressor(
290
309
  **cleaned_up_init_args,
291
310
  )
292
311
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
293
312
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
294
313
  self._snowpark_cols: Optional[List[str]] = self.input_cols
295
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
314
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
315
+ self._autogenerated = True
296
316
 
297
317
  def _get_rand_id(self) -> str:
298
318
  """
@@ -303,24 +323,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
303
323
  """
304
324
  return str(uuid4()).replace("-", "_").upper()
305
325
 
306
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
307
- """
308
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
309
-
310
- Args:
311
- dataset: Input dataset.
312
- """
313
- if not self.input_cols:
314
- cols = [
315
- c for c in dataset.columns
316
- if c not in self.get_label_cols() and c != self.sample_weight_col
317
- ]
318
- self.set_input_cols(input_cols=cols)
319
-
320
- if not self.output_cols:
321
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
322
- self.set_output_cols(output_cols=cols)
323
-
324
326
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "HistGradientBoostingRegressor":
325
327
  """
326
328
  Input columns setter.
@@ -366,54 +368,48 @@ class HistGradientBoostingRegressor(BaseTransformer):
366
368
  self
367
369
  """
368
370
  self._infer_input_output_cols(dataset)
369
- if isinstance(dataset, pd.DataFrame):
370
- assert self._sklearn_object is not None # keep mypy happy
371
- self._sklearn_object = self._handlers.fit_pandas(
372
- dataset,
373
- self._sklearn_object,
374
- self.input_cols,
375
- self.label_cols,
376
- self.sample_weight_col
377
- )
378
- elif isinstance(dataset, DataFrame):
379
- self._fit_snowpark(dataset)
380
- else:
381
- raise TypeError(
382
- f"Unexpected dataset type: {type(dataset)}."
383
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
384
- )
371
+ if isinstance(dataset, DataFrame):
372
+ session = dataset._session
373
+ assert session is not None # keep mypy happy
374
+ # Validate that key package version in user workspace are supported in snowflake conda channel
375
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
376
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
377
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
378
+
379
+ # Specify input columns so column pruning will be enforced
380
+ selected_cols = self._get_active_columns()
381
+ if len(selected_cols) > 0:
382
+ dataset = dataset.select(selected_cols)
383
+
384
+ self._snowpark_cols = dataset.select(self.input_cols).columns
385
+
386
+ # If we are already in a stored procedure, no need to kick off another one.
387
+ if SNOWML_SPROC_ENV in os.environ:
388
+ statement_params = telemetry.get_function_usage_statement_params(
389
+ project=_PROJECT,
390
+ subproject=_SUBPROJECT,
391
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__),
392
+ api_calls=[Session.call],
393
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
394
+ )
395
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
396
+ pd_df.columns = dataset.columns
397
+ dataset = pd_df
398
+
399
+ model_trainer = ModelTrainerBuilder.build(
400
+ estimator=self._sklearn_object,
401
+ dataset=dataset,
402
+ input_cols=self.input_cols,
403
+ label_cols=self.label_cols,
404
+ sample_weight_col=self.sample_weight_col,
405
+ autogenerated=self._autogenerated,
406
+ subproject=_SUBPROJECT
407
+ )
408
+ self._sklearn_object = model_trainer.train()
385
409
  self._is_fitted = True
386
410
  self._get_model_signatures(dataset)
387
411
  return self
388
412
 
389
- def _fit_snowpark(self, dataset: DataFrame) -> None:
390
- session = dataset._session
391
- assert session is not None # keep mypy happy
392
- # Validate that key package version in user workspace are supported in snowflake conda channel
393
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
394
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
395
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
396
-
397
- # Specify input columns so column pruning will be enforced
398
- selected_cols = self._get_active_columns()
399
- if len(selected_cols) > 0:
400
- dataset = dataset.select(selected_cols)
401
-
402
- estimator = self._sklearn_object
403
- assert estimator is not None # Keep mypy happy
404
-
405
- self._snowpark_cols = dataset.select(self.input_cols).columns
406
-
407
- self._sklearn_object = self._handlers.fit_snowpark(
408
- dataset,
409
- session,
410
- estimator,
411
- ["snowflake-snowpark-python"] + self._get_dependencies(),
412
- self.input_cols,
413
- self.label_cols,
414
- self.sample_weight_col,
415
- )
416
-
417
413
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
418
414
  if self._drop_input_cols:
419
415
  return []
@@ -601,11 +597,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
601
597
  subproject=_SUBPROJECT,
602
598
  custom_tags=dict([("autogen", True)]),
603
599
  )
604
- @telemetry.add_stmt_params_to_df(
605
- project=_PROJECT,
606
- subproject=_SUBPROJECT,
607
- custom_tags=dict([("autogen", True)]),
608
- )
609
600
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
610
601
  """Predict values for X
611
602
  For more details on this function, see [sklearn.ensemble.HistGradientBoostingRegressor.predict]
@@ -659,11 +650,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
659
650
  subproject=_SUBPROJECT,
660
651
  custom_tags=dict([("autogen", True)]),
661
652
  )
662
- @telemetry.add_stmt_params_to_df(
663
- project=_PROJECT,
664
- subproject=_SUBPROJECT,
665
- custom_tags=dict([("autogen", True)]),
666
- )
667
653
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
668
654
  """Method not supported for this class.
669
655
 
@@ -720,7 +706,8 @@ class HistGradientBoostingRegressor(BaseTransformer):
720
706
  if False:
721
707
  self.fit(dataset)
722
708
  assert self._sklearn_object is not None
723
- return self._sklearn_object.labels_
709
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
710
+ return labels
724
711
  else:
725
712
  raise NotImplementedError
726
713
 
@@ -756,6 +743,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
756
743
  output_cols = []
757
744
 
758
745
  # Make sure column names are valid snowflake identifiers.
746
+ assert output_cols is not None # Make MyPy happy
759
747
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
760
748
 
761
749
  return rv
@@ -766,11 +754,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
766
754
  subproject=_SUBPROJECT,
767
755
  custom_tags=dict([("autogen", True)]),
768
756
  )
769
- @telemetry.add_stmt_params_to_df(
770
- project=_PROJECT,
771
- subproject=_SUBPROJECT,
772
- custom_tags=dict([("autogen", True)]),
773
- )
774
757
  def predict_proba(
775
758
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
776
759
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -811,11 +794,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
811
794
  subproject=_SUBPROJECT,
812
795
  custom_tags=dict([("autogen", True)]),
813
796
  )
814
- @telemetry.add_stmt_params_to_df(
815
- project=_PROJECT,
816
- subproject=_SUBPROJECT,
817
- custom_tags=dict([("autogen", True)]),
818
- )
819
797
  def predict_log_proba(
820
798
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
821
799
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -852,16 +830,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
852
830
  return output_df
853
831
 
854
832
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
855
- @telemetry.send_api_usage_telemetry(
856
- project=_PROJECT,
857
- subproject=_SUBPROJECT,
858
- custom_tags=dict([("autogen", True)]),
859
- )
860
- @telemetry.add_stmt_params_to_df(
861
- project=_PROJECT,
862
- subproject=_SUBPROJECT,
863
- custom_tags=dict([("autogen", True)]),
864
- )
865
833
  def decision_function(
866
834
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
867
835
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -962,11 +930,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
962
930
  subproject=_SUBPROJECT,
963
931
  custom_tags=dict([("autogen", True)]),
964
932
  )
965
- @telemetry.add_stmt_params_to_df(
966
- project=_PROJECT,
967
- subproject=_SUBPROJECT,
968
- custom_tags=dict([("autogen", True)]),
969
- )
970
933
  def kneighbors(
971
934
  self,
972
935
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1026,18 +989,28 @@ class HistGradientBoostingRegressor(BaseTransformer):
1026
989
  # For classifier, the type of predict is the same as the type of label
1027
990
  if self._sklearn_object._estimator_type == 'classifier':
1028
991
  # label columns is the desired type for output
1029
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
992
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1030
993
  # rename the output columns
1031
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
994
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1032
995
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1033
996
  ([] if self._drop_input_cols else inputs)
1034
997
  + outputs)
998
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
999
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1000
+ # Clusterer returns int64 cluster labels.
1001
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1002
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1003
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1004
+ ([] if self._drop_input_cols else inputs)
1005
+ + outputs)
1006
+
1035
1007
  # For regressor, the type of predict is float64
1036
1008
  elif self._sklearn_object._estimator_type == 'regressor':
1037
1009
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1038
1010
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
1011
  ([] if self._drop_input_cols else inputs)
1040
1012
  + outputs)
1013
+
1041
1014
  for prob_func in PROB_FUNCTIONS:
1042
1015
  if hasattr(self, prob_func):
1043
1016
  output_cols_prefix: str = f"{prob_func}_"