snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class HistGradientBoostingRegressor(BaseTransformer):
|
57
58
|
r"""Histogram-based Gradient Boosting Regression Tree
|
58
59
|
For more details on this class, see [sklearn.ensemble.HistGradientBoostingRegressor]
|
@@ -60,6 +61,51 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
loss: {'squared_error', 'absolute_error', 'gamma', 'poisson', 'quantile'}, default='squared_error'
|
64
110
|
The loss function to use in the boosting process. Note that the
|
65
111
|
"squared error", "gamma" and "poisson" losses actually implement
|
@@ -191,35 +237,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
191
237
|
is enabled.
|
192
238
|
Pass an int for reproducible output across multiple function calls.
|
193
239
|
See :term:`Glossary <random_state>`.
|
194
|
-
|
195
|
-
input_cols: Optional[Union[str, List[str]]]
|
196
|
-
A string or list of strings representing column names that contain features.
|
197
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
198
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
199
|
-
considered input columns.
|
200
|
-
|
201
|
-
label_cols: Optional[Union[str, List[str]]]
|
202
|
-
A string or list of strings representing column names that contain labels.
|
203
|
-
This is a required param for estimators, as there is no way to infer these
|
204
|
-
columns. If this parameter is not specified, then object is fitted without
|
205
|
-
labels (like a transformer).
|
206
|
-
|
207
|
-
output_cols: Optional[Union[str, List[str]]]
|
208
|
-
A string or list of strings representing column names that will store the
|
209
|
-
output of predict and transform operations. The length of output_cols must
|
210
|
-
match the expected number of output columns from the specific estimator or
|
211
|
-
transformer class used.
|
212
|
-
If this parameter is not specified, output column names are derived by
|
213
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
214
|
-
column names work for estimator's predict() method, but output_cols must
|
215
|
-
be set explicitly for transformers.
|
216
|
-
|
217
|
-
sample_weight_col: Optional[str]
|
218
|
-
A string representing the column name containing the sample weights.
|
219
|
-
This argument is only required when working with weighted datasets.
|
220
|
-
|
221
|
-
drop_input_cols: Optional[bool], default=False
|
222
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
223
240
|
"""
|
224
241
|
|
225
242
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -248,6 +265,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
248
265
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
249
266
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
250
267
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
268
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
251
269
|
drop_input_cols: Optional[bool] = False,
|
252
270
|
sample_weight_col: Optional[str] = None,
|
253
271
|
) -> None:
|
@@ -256,9 +274,10 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
256
274
|
self.set_input_cols(input_cols)
|
257
275
|
self.set_output_cols(output_cols)
|
258
276
|
self.set_label_cols(label_cols)
|
277
|
+
self.set_passthrough_cols(passthrough_cols)
|
259
278
|
self.set_drop_input_cols(drop_input_cols)
|
260
279
|
self.set_sample_weight_col(sample_weight_col)
|
261
|
-
deps = set(
|
280
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
262
281
|
|
263
282
|
self._deps = list(deps)
|
264
283
|
|
@@ -286,13 +305,14 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
286
305
|
args=init_args,
|
287
306
|
klass=sklearn.ensemble.HistGradientBoostingRegressor
|
288
307
|
)
|
289
|
-
self._sklearn_object = sklearn.ensemble.HistGradientBoostingRegressor(
|
308
|
+
self._sklearn_object: Any = sklearn.ensemble.HistGradientBoostingRegressor(
|
290
309
|
**cleaned_up_init_args,
|
291
310
|
)
|
292
311
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
293
312
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
294
313
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
295
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
314
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
315
|
+
self._autogenerated = True
|
296
316
|
|
297
317
|
def _get_rand_id(self) -> str:
|
298
318
|
"""
|
@@ -303,24 +323,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
303
323
|
"""
|
304
324
|
return str(uuid4()).replace("-", "_").upper()
|
305
325
|
|
306
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
307
|
-
"""
|
308
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
309
|
-
|
310
|
-
Args:
|
311
|
-
dataset: Input dataset.
|
312
|
-
"""
|
313
|
-
if not self.input_cols:
|
314
|
-
cols = [
|
315
|
-
c for c in dataset.columns
|
316
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
317
|
-
]
|
318
|
-
self.set_input_cols(input_cols=cols)
|
319
|
-
|
320
|
-
if not self.output_cols:
|
321
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
322
|
-
self.set_output_cols(output_cols=cols)
|
323
|
-
|
324
326
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "HistGradientBoostingRegressor":
|
325
327
|
"""
|
326
328
|
Input columns setter.
|
@@ -366,54 +368,48 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
366
368
|
self
|
367
369
|
"""
|
368
370
|
self._infer_input_output_cols(dataset)
|
369
|
-
if isinstance(dataset,
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
self.
|
376
|
-
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
371
|
+
if isinstance(dataset, DataFrame):
|
372
|
+
session = dataset._session
|
373
|
+
assert session is not None # keep mypy happy
|
374
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
375
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
376
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
377
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
378
|
+
|
379
|
+
# Specify input columns so column pruning will be enforced
|
380
|
+
selected_cols = self._get_active_columns()
|
381
|
+
if len(selected_cols) > 0:
|
382
|
+
dataset = dataset.select(selected_cols)
|
383
|
+
|
384
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
385
|
+
|
386
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
387
|
+
if SNOWML_SPROC_ENV in os.environ:
|
388
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
389
|
+
project=_PROJECT,
|
390
|
+
subproject=_SUBPROJECT,
|
391
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__),
|
392
|
+
api_calls=[Session.call],
|
393
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
394
|
+
)
|
395
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
396
|
+
pd_df.columns = dataset.columns
|
397
|
+
dataset = pd_df
|
398
|
+
|
399
|
+
model_trainer = ModelTrainerBuilder.build(
|
400
|
+
estimator=self._sklearn_object,
|
401
|
+
dataset=dataset,
|
402
|
+
input_cols=self.input_cols,
|
403
|
+
label_cols=self.label_cols,
|
404
|
+
sample_weight_col=self.sample_weight_col,
|
405
|
+
autogenerated=self._autogenerated,
|
406
|
+
subproject=_SUBPROJECT
|
407
|
+
)
|
408
|
+
self._sklearn_object = model_trainer.train()
|
385
409
|
self._is_fitted = True
|
386
410
|
self._get_model_signatures(dataset)
|
387
411
|
return self
|
388
412
|
|
389
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
390
|
-
session = dataset._session
|
391
|
-
assert session is not None # keep mypy happy
|
392
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
393
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
394
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
395
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
396
|
-
|
397
|
-
# Specify input columns so column pruning will be enforced
|
398
|
-
selected_cols = self._get_active_columns()
|
399
|
-
if len(selected_cols) > 0:
|
400
|
-
dataset = dataset.select(selected_cols)
|
401
|
-
|
402
|
-
estimator = self._sklearn_object
|
403
|
-
assert estimator is not None # Keep mypy happy
|
404
|
-
|
405
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
406
|
-
|
407
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
408
|
-
dataset,
|
409
|
-
session,
|
410
|
-
estimator,
|
411
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
412
|
-
self.input_cols,
|
413
|
-
self.label_cols,
|
414
|
-
self.sample_weight_col,
|
415
|
-
)
|
416
|
-
|
417
413
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
418
414
|
if self._drop_input_cols:
|
419
415
|
return []
|
@@ -601,11 +597,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
601
597
|
subproject=_SUBPROJECT,
|
602
598
|
custom_tags=dict([("autogen", True)]),
|
603
599
|
)
|
604
|
-
@telemetry.add_stmt_params_to_df(
|
605
|
-
project=_PROJECT,
|
606
|
-
subproject=_SUBPROJECT,
|
607
|
-
custom_tags=dict([("autogen", True)]),
|
608
|
-
)
|
609
600
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
610
601
|
"""Predict values for X
|
611
602
|
For more details on this function, see [sklearn.ensemble.HistGradientBoostingRegressor.predict]
|
@@ -659,11 +650,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
659
650
|
subproject=_SUBPROJECT,
|
660
651
|
custom_tags=dict([("autogen", True)]),
|
661
652
|
)
|
662
|
-
@telemetry.add_stmt_params_to_df(
|
663
|
-
project=_PROJECT,
|
664
|
-
subproject=_SUBPROJECT,
|
665
|
-
custom_tags=dict([("autogen", True)]),
|
666
|
-
)
|
667
653
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
668
654
|
"""Method not supported for this class.
|
669
655
|
|
@@ -720,7 +706,8 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
720
706
|
if False:
|
721
707
|
self.fit(dataset)
|
722
708
|
assert self._sklearn_object is not None
|
723
|
-
|
709
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
710
|
+
return labels
|
724
711
|
else:
|
725
712
|
raise NotImplementedError
|
726
713
|
|
@@ -756,6 +743,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
756
743
|
output_cols = []
|
757
744
|
|
758
745
|
# Make sure column names are valid snowflake identifiers.
|
746
|
+
assert output_cols is not None # Make MyPy happy
|
759
747
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
760
748
|
|
761
749
|
return rv
|
@@ -766,11 +754,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
766
754
|
subproject=_SUBPROJECT,
|
767
755
|
custom_tags=dict([("autogen", True)]),
|
768
756
|
)
|
769
|
-
@telemetry.add_stmt_params_to_df(
|
770
|
-
project=_PROJECT,
|
771
|
-
subproject=_SUBPROJECT,
|
772
|
-
custom_tags=dict([("autogen", True)]),
|
773
|
-
)
|
774
757
|
def predict_proba(
|
775
758
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
776
759
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -811,11 +794,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
811
794
|
subproject=_SUBPROJECT,
|
812
795
|
custom_tags=dict([("autogen", True)]),
|
813
796
|
)
|
814
|
-
@telemetry.add_stmt_params_to_df(
|
815
|
-
project=_PROJECT,
|
816
|
-
subproject=_SUBPROJECT,
|
817
|
-
custom_tags=dict([("autogen", True)]),
|
818
|
-
)
|
819
797
|
def predict_log_proba(
|
820
798
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
821
799
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -852,16 +830,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
852
830
|
return output_df
|
853
831
|
|
854
832
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
855
|
-
@telemetry.send_api_usage_telemetry(
|
856
|
-
project=_PROJECT,
|
857
|
-
subproject=_SUBPROJECT,
|
858
|
-
custom_tags=dict([("autogen", True)]),
|
859
|
-
)
|
860
|
-
@telemetry.add_stmt_params_to_df(
|
861
|
-
project=_PROJECT,
|
862
|
-
subproject=_SUBPROJECT,
|
863
|
-
custom_tags=dict([("autogen", True)]),
|
864
|
-
)
|
865
833
|
def decision_function(
|
866
834
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
867
835
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -962,11 +930,6 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
962
930
|
subproject=_SUBPROJECT,
|
963
931
|
custom_tags=dict([("autogen", True)]),
|
964
932
|
)
|
965
|
-
@telemetry.add_stmt_params_to_df(
|
966
|
-
project=_PROJECT,
|
967
|
-
subproject=_SUBPROJECT,
|
968
|
-
custom_tags=dict([("autogen", True)]),
|
969
|
-
)
|
970
933
|
def kneighbors(
|
971
934
|
self,
|
972
935
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1026,18 +989,28 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
1026
989
|
# For classifier, the type of predict is the same as the type of label
|
1027
990
|
if self._sklearn_object._estimator_type == 'classifier':
|
1028
991
|
# label columns is the desired type for output
|
1029
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
992
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1030
993
|
# rename the output columns
|
1031
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
994
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1032
995
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1033
996
|
([] if self._drop_input_cols else inputs)
|
1034
997
|
+ outputs)
|
998
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
999
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1000
|
+
# Clusterer returns int64 cluster labels.
|
1001
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1002
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1003
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1004
|
+
([] if self._drop_input_cols else inputs)
|
1005
|
+
+ outputs)
|
1006
|
+
|
1035
1007
|
# For regressor, the type of predict is float64
|
1036
1008
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1037
1009
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1038
1010
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1039
1011
|
([] if self._drop_input_cols else inputs)
|
1040
1012
|
+ outputs)
|
1013
|
+
|
1041
1014
|
for prob_func in PROB_FUNCTIONS:
|
1042
1015
|
if hasattr(self, prob_func):
|
1043
1016
|
output_cols_prefix: str = f"{prob_func}_"
|