snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class OPTICS(BaseTransformer):
57
58
  r"""Estimate clustering structure from vector array
58
59
  For more details on this class, see [sklearn.cluster.OPTICS]
@@ -60,6 +61,49 @@ class OPTICS(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  min_samples: int > 1 or float between 0 and 1, default=5
64
108
  The number of samples in a neighborhood for a point to be considered as
65
109
  a core point. Also, up and down steep regions can't have more than
@@ -165,35 +209,6 @@ class OPTICS(BaseTransformer):
165
209
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
166
210
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
167
211
  for more details.
168
-
169
- input_cols: Optional[Union[str, List[str]]]
170
- A string or list of strings representing column names that contain features.
171
- If this parameter is not specified, all columns in the input DataFrame except
172
- the columns specified by label_cols and sample_weight_col parameters are
173
- considered input columns.
174
-
175
- label_cols: Optional[Union[str, List[str]]]
176
- A string or list of strings representing column names that contain labels.
177
- This is a required param for estimators, as there is no way to infer these
178
- columns. If this parameter is not specified, then object is fitted without
179
- labels (like a transformer).
180
-
181
- output_cols: Optional[Union[str, List[str]]]
182
- A string or list of strings representing column names that will store the
183
- output of predict and transform operations. The length of output_cols must
184
- match the expected number of output columns from the specific estimator or
185
- transformer class used.
186
- If this parameter is not specified, output column names are derived by
187
- adding an OUTPUT_ prefix to the label column names. These inferred output
188
- column names work for estimator's predict() method, but output_cols must
189
- be set explicitly for transformers.
190
-
191
- sample_weight_col: Optional[str]
192
- A string representing the column name containing the sample weights.
193
- This argument is only required when working with weighted datasets.
194
-
195
- drop_input_cols: Optional[bool], default=False
196
- If set, the response of predict(), transform() methods will not contain input columns.
197
212
  """
198
213
 
199
214
  def __init__( # type: ignore[no-untyped-def]
@@ -216,6 +231,7 @@ class OPTICS(BaseTransformer):
216
231
  input_cols: Optional[Union[str, Iterable[str]]] = None,
217
232
  output_cols: Optional[Union[str, Iterable[str]]] = None,
218
233
  label_cols: Optional[Union[str, Iterable[str]]] = None,
234
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
219
235
  drop_input_cols: Optional[bool] = False,
220
236
  sample_weight_col: Optional[str] = None,
221
237
  ) -> None:
@@ -224,9 +240,10 @@ class OPTICS(BaseTransformer):
224
240
  self.set_input_cols(input_cols)
225
241
  self.set_output_cols(output_cols)
226
242
  self.set_label_cols(label_cols)
243
+ self.set_passthrough_cols(passthrough_cols)
227
244
  self.set_drop_input_cols(drop_input_cols)
228
245
  self.set_sample_weight_col(sample_weight_col)
229
- deps = set(SklearnWrapperProvider().dependencies)
246
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
230
247
 
231
248
  self._deps = list(deps)
232
249
 
@@ -248,13 +265,14 @@ class OPTICS(BaseTransformer):
248
265
  args=init_args,
249
266
  klass=sklearn.cluster.OPTICS
250
267
  )
251
- self._sklearn_object = sklearn.cluster.OPTICS(
268
+ self._sklearn_object: Any = sklearn.cluster.OPTICS(
252
269
  **cleaned_up_init_args,
253
270
  )
254
271
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
255
272
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
256
273
  self._snowpark_cols: Optional[List[str]] = self.input_cols
257
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=OPTICS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
274
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=OPTICS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
275
+ self._autogenerated = True
258
276
 
259
277
  def _get_rand_id(self) -> str:
260
278
  """
@@ -265,24 +283,6 @@ class OPTICS(BaseTransformer):
265
283
  """
266
284
  return str(uuid4()).replace("-", "_").upper()
267
285
 
268
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
269
- """
270
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
271
-
272
- Args:
273
- dataset: Input dataset.
274
- """
275
- if not self.input_cols:
276
- cols = [
277
- c for c in dataset.columns
278
- if c not in self.get_label_cols() and c != self.sample_weight_col
279
- ]
280
- self.set_input_cols(input_cols=cols)
281
-
282
- if not self.output_cols:
283
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
284
- self.set_output_cols(output_cols=cols)
285
-
286
286
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "OPTICS":
287
287
  """
288
288
  Input columns setter.
@@ -328,54 +328,48 @@ class OPTICS(BaseTransformer):
328
328
  self
329
329
  """
330
330
  self._infer_input_output_cols(dataset)
331
- if isinstance(dataset, pd.DataFrame):
332
- assert self._sklearn_object is not None # keep mypy happy
333
- self._sklearn_object = self._handlers.fit_pandas(
334
- dataset,
335
- self._sklearn_object,
336
- self.input_cols,
337
- self.label_cols,
338
- self.sample_weight_col
339
- )
340
- elif isinstance(dataset, DataFrame):
341
- self._fit_snowpark(dataset)
342
- else:
343
- raise TypeError(
344
- f"Unexpected dataset type: {type(dataset)}."
345
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
346
- )
331
+ if isinstance(dataset, DataFrame):
332
+ session = dataset._session
333
+ assert session is not None # keep mypy happy
334
+ # Validate that key package version in user workspace are supported in snowflake conda channel
335
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
336
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
337
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
338
+
339
+ # Specify input columns so column pruning will be enforced
340
+ selected_cols = self._get_active_columns()
341
+ if len(selected_cols) > 0:
342
+ dataset = dataset.select(selected_cols)
343
+
344
+ self._snowpark_cols = dataset.select(self.input_cols).columns
345
+
346
+ # If we are already in a stored procedure, no need to kick off another one.
347
+ if SNOWML_SPROC_ENV in os.environ:
348
+ statement_params = telemetry.get_function_usage_statement_params(
349
+ project=_PROJECT,
350
+ subproject=_SUBPROJECT,
351
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OPTICS.__class__.__name__),
352
+ api_calls=[Session.call],
353
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
354
+ )
355
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
356
+ pd_df.columns = dataset.columns
357
+ dataset = pd_df
358
+
359
+ model_trainer = ModelTrainerBuilder.build(
360
+ estimator=self._sklearn_object,
361
+ dataset=dataset,
362
+ input_cols=self.input_cols,
363
+ label_cols=self.label_cols,
364
+ sample_weight_col=self.sample_weight_col,
365
+ autogenerated=self._autogenerated,
366
+ subproject=_SUBPROJECT
367
+ )
368
+ self._sklearn_object = model_trainer.train()
347
369
  self._is_fitted = True
348
370
  self._get_model_signatures(dataset)
349
371
  return self
350
372
 
351
- def _fit_snowpark(self, dataset: DataFrame) -> None:
352
- session = dataset._session
353
- assert session is not None # keep mypy happy
354
- # Validate that key package version in user workspace are supported in snowflake conda channel
355
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
356
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
357
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
358
-
359
- # Specify input columns so column pruning will be enforced
360
- selected_cols = self._get_active_columns()
361
- if len(selected_cols) > 0:
362
- dataset = dataset.select(selected_cols)
363
-
364
- estimator = self._sklearn_object
365
- assert estimator is not None # Keep mypy happy
366
-
367
- self._snowpark_cols = dataset.select(self.input_cols).columns
368
-
369
- self._sklearn_object = self._handlers.fit_snowpark(
370
- dataset,
371
- session,
372
- estimator,
373
- ["snowflake-snowpark-python"] + self._get_dependencies(),
374
- self.input_cols,
375
- self.label_cols,
376
- self.sample_weight_col,
377
- )
378
-
379
373
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
380
374
  if self._drop_input_cols:
381
375
  return []
@@ -563,11 +557,6 @@ class OPTICS(BaseTransformer):
563
557
  subproject=_SUBPROJECT,
564
558
  custom_tags=dict([("autogen", True)]),
565
559
  )
566
- @telemetry.add_stmt_params_to_df(
567
- project=_PROJECT,
568
- subproject=_SUBPROJECT,
569
- custom_tags=dict([("autogen", True)]),
570
- )
571
560
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
572
561
  """Method not supported for this class.
573
562
 
@@ -619,11 +608,6 @@ class OPTICS(BaseTransformer):
619
608
  subproject=_SUBPROJECT,
620
609
  custom_tags=dict([("autogen", True)]),
621
610
  )
622
- @telemetry.add_stmt_params_to_df(
623
- project=_PROJECT,
624
- subproject=_SUBPROJECT,
625
- custom_tags=dict([("autogen", True)]),
626
- )
627
611
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
628
612
  """Method not supported for this class.
629
613
 
@@ -682,7 +666,8 @@ class OPTICS(BaseTransformer):
682
666
  if True:
683
667
  self.fit(dataset)
684
668
  assert self._sklearn_object is not None
685
- return self._sklearn_object.labels_
669
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
670
+ return labels
686
671
  else:
687
672
  raise NotImplementedError
688
673
 
@@ -718,6 +703,7 @@ class OPTICS(BaseTransformer):
718
703
  output_cols = []
719
704
 
720
705
  # Make sure column names are valid snowflake identifiers.
706
+ assert output_cols is not None # Make MyPy happy
721
707
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
722
708
 
723
709
  return rv
@@ -728,11 +714,6 @@ class OPTICS(BaseTransformer):
728
714
  subproject=_SUBPROJECT,
729
715
  custom_tags=dict([("autogen", True)]),
730
716
  )
731
- @telemetry.add_stmt_params_to_df(
732
- project=_PROJECT,
733
- subproject=_SUBPROJECT,
734
- custom_tags=dict([("autogen", True)]),
735
- )
736
717
  def predict_proba(
737
718
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
738
719
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -773,11 +754,6 @@ class OPTICS(BaseTransformer):
773
754
  subproject=_SUBPROJECT,
774
755
  custom_tags=dict([("autogen", True)]),
775
756
  )
776
- @telemetry.add_stmt_params_to_df(
777
- project=_PROJECT,
778
- subproject=_SUBPROJECT,
779
- custom_tags=dict([("autogen", True)]),
780
- )
781
757
  def predict_log_proba(
782
758
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
783
759
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -814,16 +790,6 @@ class OPTICS(BaseTransformer):
814
790
  return output_df
815
791
 
816
792
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
817
- @telemetry.send_api_usage_telemetry(
818
- project=_PROJECT,
819
- subproject=_SUBPROJECT,
820
- custom_tags=dict([("autogen", True)]),
821
- )
822
- @telemetry.add_stmt_params_to_df(
823
- project=_PROJECT,
824
- subproject=_SUBPROJECT,
825
- custom_tags=dict([("autogen", True)]),
826
- )
827
793
  def decision_function(
828
794
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
829
795
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -922,11 +888,6 @@ class OPTICS(BaseTransformer):
922
888
  subproject=_SUBPROJECT,
923
889
  custom_tags=dict([("autogen", True)]),
924
890
  )
925
- @telemetry.add_stmt_params_to_df(
926
- project=_PROJECT,
927
- subproject=_SUBPROJECT,
928
- custom_tags=dict([("autogen", True)]),
929
- )
930
891
  def kneighbors(
931
892
  self,
932
893
  dataset: Union[DataFrame, pd.DataFrame],
@@ -986,18 +947,28 @@ class OPTICS(BaseTransformer):
986
947
  # For classifier, the type of predict is the same as the type of label
987
948
  if self._sklearn_object._estimator_type == 'classifier':
988
949
  # label columns is the desired type for output
989
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
950
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
990
951
  # rename the output columns
991
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
952
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
953
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
954
+ ([] if self._drop_input_cols else inputs)
955
+ + outputs)
956
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
957
+ # For outlier models, returns -1 for outliers and 1 for inliers.
958
+ # Clusterer returns int64 cluster labels.
959
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
960
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
992
961
  self._model_signature_dict["predict"] = ModelSignature(inputs,
993
962
  ([] if self._drop_input_cols else inputs)
994
963
  + outputs)
964
+
995
965
  # For regressor, the type of predict is float64
996
966
  elif self._sklearn_object._estimator_type == 'regressor':
997
967
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
998
968
  self._model_signature_dict["predict"] = ModelSignature(inputs,
999
969
  ([] if self._drop_input_cols else inputs)
1000
970
  + outputs)
971
+
1001
972
  for prob_func in PROB_FUNCTIONS:
1002
973
  if hasattr(self, prob_func):
1003
974
  output_cols_prefix: str = f"{prob_func}_"