snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Nystroem(BaseTransformer):
|
57
58
|
r"""Approximate a kernel map using a subset of the training data
|
58
59
|
For more details on this class, see [sklearn.kernel_approximation.Nystroem]
|
@@ -60,6 +61,49 @@ class Nystroem(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
kernel: str or callable, default='rbf'
|
64
108
|
Kernel map to be approximated. A callable should accept two arguments
|
65
109
|
and the keyword arguments passed to this object as `kernel_params`, and
|
@@ -101,35 +145,6 @@ class Nystroem(BaseTransformer):
|
|
101
145
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
102
146
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
103
147
|
for more details.
|
104
|
-
|
105
|
-
input_cols: Optional[Union[str, List[str]]]
|
106
|
-
A string or list of strings representing column names that contain features.
|
107
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
108
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
109
|
-
considered input columns.
|
110
|
-
|
111
|
-
label_cols: Optional[Union[str, List[str]]]
|
112
|
-
A string or list of strings representing column names that contain labels.
|
113
|
-
This is a required param for estimators, as there is no way to infer these
|
114
|
-
columns. If this parameter is not specified, then object is fitted without
|
115
|
-
labels (like a transformer).
|
116
|
-
|
117
|
-
output_cols: Optional[Union[str, List[str]]]
|
118
|
-
A string or list of strings representing column names that will store the
|
119
|
-
output of predict and transform operations. The length of output_cols must
|
120
|
-
match the expected number of output columns from the specific estimator or
|
121
|
-
transformer class used.
|
122
|
-
If this parameter is not specified, output column names are derived by
|
123
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
124
|
-
column names work for estimator's predict() method, but output_cols must
|
125
|
-
be set explicitly for transformers.
|
126
|
-
|
127
|
-
sample_weight_col: Optional[str]
|
128
|
-
A string representing the column name containing the sample weights.
|
129
|
-
This argument is only required when working with weighted datasets.
|
130
|
-
|
131
|
-
drop_input_cols: Optional[bool], default=False
|
132
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
133
148
|
"""
|
134
149
|
|
135
150
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -146,6 +161,7 @@ class Nystroem(BaseTransformer):
|
|
146
161
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
147
162
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
148
163
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
164
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
149
165
|
drop_input_cols: Optional[bool] = False,
|
150
166
|
sample_weight_col: Optional[str] = None,
|
151
167
|
) -> None:
|
@@ -154,9 +170,10 @@ class Nystroem(BaseTransformer):
|
|
154
170
|
self.set_input_cols(input_cols)
|
155
171
|
self.set_output_cols(output_cols)
|
156
172
|
self.set_label_cols(label_cols)
|
173
|
+
self.set_passthrough_cols(passthrough_cols)
|
157
174
|
self.set_drop_input_cols(drop_input_cols)
|
158
175
|
self.set_sample_weight_col(sample_weight_col)
|
159
|
-
deps = set(
|
176
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
160
177
|
|
161
178
|
self._deps = list(deps)
|
162
179
|
|
@@ -172,13 +189,14 @@ class Nystroem(BaseTransformer):
|
|
172
189
|
args=init_args,
|
173
190
|
klass=sklearn.kernel_approximation.Nystroem
|
174
191
|
)
|
175
|
-
self._sklearn_object = sklearn.kernel_approximation.Nystroem(
|
192
|
+
self._sklearn_object: Any = sklearn.kernel_approximation.Nystroem(
|
176
193
|
**cleaned_up_init_args,
|
177
194
|
)
|
178
195
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
179
196
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
180
197
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
181
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Nystroem.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
198
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Nystroem.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
199
|
+
self._autogenerated = True
|
182
200
|
|
183
201
|
def _get_rand_id(self) -> str:
|
184
202
|
"""
|
@@ -189,24 +207,6 @@ class Nystroem(BaseTransformer):
|
|
189
207
|
"""
|
190
208
|
return str(uuid4()).replace("-", "_").upper()
|
191
209
|
|
192
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
193
|
-
"""
|
194
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
195
|
-
|
196
|
-
Args:
|
197
|
-
dataset: Input dataset.
|
198
|
-
"""
|
199
|
-
if not self.input_cols:
|
200
|
-
cols = [
|
201
|
-
c for c in dataset.columns
|
202
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
203
|
-
]
|
204
|
-
self.set_input_cols(input_cols=cols)
|
205
|
-
|
206
|
-
if not self.output_cols:
|
207
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
208
|
-
self.set_output_cols(output_cols=cols)
|
209
|
-
|
210
210
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Nystroem":
|
211
211
|
"""
|
212
212
|
Input columns setter.
|
@@ -252,54 +252,48 @@ class Nystroem(BaseTransformer):
|
|
252
252
|
self
|
253
253
|
"""
|
254
254
|
self._infer_input_output_cols(dataset)
|
255
|
-
if isinstance(dataset,
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
self.
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
255
|
+
if isinstance(dataset, DataFrame):
|
256
|
+
session = dataset._session
|
257
|
+
assert session is not None # keep mypy happy
|
258
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
259
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
260
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
261
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
262
|
+
|
263
|
+
# Specify input columns so column pruning will be enforced
|
264
|
+
selected_cols = self._get_active_columns()
|
265
|
+
if len(selected_cols) > 0:
|
266
|
+
dataset = dataset.select(selected_cols)
|
267
|
+
|
268
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
269
|
+
|
270
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
271
|
+
if SNOWML_SPROC_ENV in os.environ:
|
272
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
273
|
+
project=_PROJECT,
|
274
|
+
subproject=_SUBPROJECT,
|
275
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Nystroem.__class__.__name__),
|
276
|
+
api_calls=[Session.call],
|
277
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
278
|
+
)
|
279
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
280
|
+
pd_df.columns = dataset.columns
|
281
|
+
dataset = pd_df
|
282
|
+
|
283
|
+
model_trainer = ModelTrainerBuilder.build(
|
284
|
+
estimator=self._sklearn_object,
|
285
|
+
dataset=dataset,
|
286
|
+
input_cols=self.input_cols,
|
287
|
+
label_cols=self.label_cols,
|
288
|
+
sample_weight_col=self.sample_weight_col,
|
289
|
+
autogenerated=self._autogenerated,
|
290
|
+
subproject=_SUBPROJECT
|
291
|
+
)
|
292
|
+
self._sklearn_object = model_trainer.train()
|
271
293
|
self._is_fitted = True
|
272
294
|
self._get_model_signatures(dataset)
|
273
295
|
return self
|
274
296
|
|
275
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
276
|
-
session = dataset._session
|
277
|
-
assert session is not None # keep mypy happy
|
278
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
279
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
280
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
281
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
282
|
-
|
283
|
-
# Specify input columns so column pruning will be enforced
|
284
|
-
selected_cols = self._get_active_columns()
|
285
|
-
if len(selected_cols) > 0:
|
286
|
-
dataset = dataset.select(selected_cols)
|
287
|
-
|
288
|
-
estimator = self._sklearn_object
|
289
|
-
assert estimator is not None # Keep mypy happy
|
290
|
-
|
291
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
292
|
-
|
293
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
294
|
-
dataset,
|
295
|
-
session,
|
296
|
-
estimator,
|
297
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
298
|
-
self.input_cols,
|
299
|
-
self.label_cols,
|
300
|
-
self.sample_weight_col,
|
301
|
-
)
|
302
|
-
|
303
297
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
304
298
|
if self._drop_input_cols:
|
305
299
|
return []
|
@@ -487,11 +481,6 @@ class Nystroem(BaseTransformer):
|
|
487
481
|
subproject=_SUBPROJECT,
|
488
482
|
custom_tags=dict([("autogen", True)]),
|
489
483
|
)
|
490
|
-
@telemetry.add_stmt_params_to_df(
|
491
|
-
project=_PROJECT,
|
492
|
-
subproject=_SUBPROJECT,
|
493
|
-
custom_tags=dict([("autogen", True)]),
|
494
|
-
)
|
495
484
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
496
485
|
"""Method not supported for this class.
|
497
486
|
|
@@ -543,11 +532,6 @@ class Nystroem(BaseTransformer):
|
|
543
532
|
subproject=_SUBPROJECT,
|
544
533
|
custom_tags=dict([("autogen", True)]),
|
545
534
|
)
|
546
|
-
@telemetry.add_stmt_params_to_df(
|
547
|
-
project=_PROJECT,
|
548
|
-
subproject=_SUBPROJECT,
|
549
|
-
custom_tags=dict([("autogen", True)]),
|
550
|
-
)
|
551
535
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
552
536
|
"""Apply feature map to X
|
553
537
|
For more details on this function, see [sklearn.kernel_approximation.Nystroem.transform]
|
@@ -606,7 +590,8 @@ class Nystroem(BaseTransformer):
|
|
606
590
|
if False:
|
607
591
|
self.fit(dataset)
|
608
592
|
assert self._sklearn_object is not None
|
609
|
-
|
593
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
594
|
+
return labels
|
610
595
|
else:
|
611
596
|
raise NotImplementedError
|
612
597
|
|
@@ -642,6 +627,7 @@ class Nystroem(BaseTransformer):
|
|
642
627
|
output_cols = []
|
643
628
|
|
644
629
|
# Make sure column names are valid snowflake identifiers.
|
630
|
+
assert output_cols is not None # Make MyPy happy
|
645
631
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
646
632
|
|
647
633
|
return rv
|
@@ -652,11 +638,6 @@ class Nystroem(BaseTransformer):
|
|
652
638
|
subproject=_SUBPROJECT,
|
653
639
|
custom_tags=dict([("autogen", True)]),
|
654
640
|
)
|
655
|
-
@telemetry.add_stmt_params_to_df(
|
656
|
-
project=_PROJECT,
|
657
|
-
subproject=_SUBPROJECT,
|
658
|
-
custom_tags=dict([("autogen", True)]),
|
659
|
-
)
|
660
641
|
def predict_proba(
|
661
642
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
662
643
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -697,11 +678,6 @@ class Nystroem(BaseTransformer):
|
|
697
678
|
subproject=_SUBPROJECT,
|
698
679
|
custom_tags=dict([("autogen", True)]),
|
699
680
|
)
|
700
|
-
@telemetry.add_stmt_params_to_df(
|
701
|
-
project=_PROJECT,
|
702
|
-
subproject=_SUBPROJECT,
|
703
|
-
custom_tags=dict([("autogen", True)]),
|
704
|
-
)
|
705
681
|
def predict_log_proba(
|
706
682
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
707
683
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -738,16 +714,6 @@ class Nystroem(BaseTransformer):
|
|
738
714
|
return output_df
|
739
715
|
|
740
716
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
741
|
-
@telemetry.send_api_usage_telemetry(
|
742
|
-
project=_PROJECT,
|
743
|
-
subproject=_SUBPROJECT,
|
744
|
-
custom_tags=dict([("autogen", True)]),
|
745
|
-
)
|
746
|
-
@telemetry.add_stmt_params_to_df(
|
747
|
-
project=_PROJECT,
|
748
|
-
subproject=_SUBPROJECT,
|
749
|
-
custom_tags=dict([("autogen", True)]),
|
750
|
-
)
|
751
717
|
def decision_function(
|
752
718
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
753
719
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -846,11 +812,6 @@ class Nystroem(BaseTransformer):
|
|
846
812
|
subproject=_SUBPROJECT,
|
847
813
|
custom_tags=dict([("autogen", True)]),
|
848
814
|
)
|
849
|
-
@telemetry.add_stmt_params_to_df(
|
850
|
-
project=_PROJECT,
|
851
|
-
subproject=_SUBPROJECT,
|
852
|
-
custom_tags=dict([("autogen", True)]),
|
853
|
-
)
|
854
815
|
def kneighbors(
|
855
816
|
self,
|
856
817
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -910,18 +871,28 @@ class Nystroem(BaseTransformer):
|
|
910
871
|
# For classifier, the type of predict is the same as the type of label
|
911
872
|
if self._sklearn_object._estimator_type == 'classifier':
|
912
873
|
# label columns is the desired type for output
|
913
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
874
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
914
875
|
# rename the output columns
|
915
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
876
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
877
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
878
|
+
([] if self._drop_input_cols else inputs)
|
879
|
+
+ outputs)
|
880
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
881
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
882
|
+
# Clusterer returns int64 cluster labels.
|
883
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
884
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
916
885
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
917
886
|
([] if self._drop_input_cols else inputs)
|
918
887
|
+ outputs)
|
888
|
+
|
919
889
|
# For regressor, the type of predict is float64
|
920
890
|
elif self._sklearn_object._estimator_type == 'regressor':
|
921
891
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
922
892
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
923
893
|
([] if self._drop_input_cols else inputs)
|
924
894
|
+ outputs)
|
895
|
+
|
925
896
|
for prob_func in PROB_FUNCTIONS:
|
926
897
|
if hasattr(self, prob_func):
|
927
898
|
output_cols_prefix: str = f"{prob_func}_"
|