snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class Nystroem(BaseTransformer):
57
58
  r"""Approximate a kernel map using a subset of the training data
58
59
  For more details on this class, see [sklearn.kernel_approximation.Nystroem]
@@ -60,6 +61,49 @@ class Nystroem(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  kernel: str or callable, default='rbf'
64
108
  Kernel map to be approximated. A callable should accept two arguments
65
109
  and the keyword arguments passed to this object as `kernel_params`, and
@@ -101,35 +145,6 @@ class Nystroem(BaseTransformer):
101
145
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
102
146
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
103
147
  for more details.
104
-
105
- input_cols: Optional[Union[str, List[str]]]
106
- A string or list of strings representing column names that contain features.
107
- If this parameter is not specified, all columns in the input DataFrame except
108
- the columns specified by label_cols and sample_weight_col parameters are
109
- considered input columns.
110
-
111
- label_cols: Optional[Union[str, List[str]]]
112
- A string or list of strings representing column names that contain labels.
113
- This is a required param for estimators, as there is no way to infer these
114
- columns. If this parameter is not specified, then object is fitted without
115
- labels (like a transformer).
116
-
117
- output_cols: Optional[Union[str, List[str]]]
118
- A string or list of strings representing column names that will store the
119
- output of predict and transform operations. The length of output_cols must
120
- match the expected number of output columns from the specific estimator or
121
- transformer class used.
122
- If this parameter is not specified, output column names are derived by
123
- adding an OUTPUT_ prefix to the label column names. These inferred output
124
- column names work for estimator's predict() method, but output_cols must
125
- be set explicitly for transformers.
126
-
127
- sample_weight_col: Optional[str]
128
- A string representing the column name containing the sample weights.
129
- This argument is only required when working with weighted datasets.
130
-
131
- drop_input_cols: Optional[bool], default=False
132
- If set, the response of predict(), transform() methods will not contain input columns.
133
148
  """
134
149
 
135
150
  def __init__( # type: ignore[no-untyped-def]
@@ -146,6 +161,7 @@ class Nystroem(BaseTransformer):
146
161
  input_cols: Optional[Union[str, Iterable[str]]] = None,
147
162
  output_cols: Optional[Union[str, Iterable[str]]] = None,
148
163
  label_cols: Optional[Union[str, Iterable[str]]] = None,
164
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
149
165
  drop_input_cols: Optional[bool] = False,
150
166
  sample_weight_col: Optional[str] = None,
151
167
  ) -> None:
@@ -154,9 +170,10 @@ class Nystroem(BaseTransformer):
154
170
  self.set_input_cols(input_cols)
155
171
  self.set_output_cols(output_cols)
156
172
  self.set_label_cols(label_cols)
173
+ self.set_passthrough_cols(passthrough_cols)
157
174
  self.set_drop_input_cols(drop_input_cols)
158
175
  self.set_sample_weight_col(sample_weight_col)
159
- deps = set(SklearnWrapperProvider().dependencies)
176
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
160
177
 
161
178
  self._deps = list(deps)
162
179
 
@@ -172,13 +189,14 @@ class Nystroem(BaseTransformer):
172
189
  args=init_args,
173
190
  klass=sklearn.kernel_approximation.Nystroem
174
191
  )
175
- self._sklearn_object = sklearn.kernel_approximation.Nystroem(
192
+ self._sklearn_object: Any = sklearn.kernel_approximation.Nystroem(
176
193
  **cleaned_up_init_args,
177
194
  )
178
195
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
179
196
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
180
197
  self._snowpark_cols: Optional[List[str]] = self.input_cols
181
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Nystroem.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
198
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=Nystroem.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
199
+ self._autogenerated = True
182
200
 
183
201
  def _get_rand_id(self) -> str:
184
202
  """
@@ -189,24 +207,6 @@ class Nystroem(BaseTransformer):
189
207
  """
190
208
  return str(uuid4()).replace("-", "_").upper()
191
209
 
192
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
193
- """
194
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
195
-
196
- Args:
197
- dataset: Input dataset.
198
- """
199
- if not self.input_cols:
200
- cols = [
201
- c for c in dataset.columns
202
- if c not in self.get_label_cols() and c != self.sample_weight_col
203
- ]
204
- self.set_input_cols(input_cols=cols)
205
-
206
- if not self.output_cols:
207
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
208
- self.set_output_cols(output_cols=cols)
209
-
210
210
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Nystroem":
211
211
  """
212
212
  Input columns setter.
@@ -252,54 +252,48 @@ class Nystroem(BaseTransformer):
252
252
  self
253
253
  """
254
254
  self._infer_input_output_cols(dataset)
255
- if isinstance(dataset, pd.DataFrame):
256
- assert self._sklearn_object is not None # keep mypy happy
257
- self._sklearn_object = self._handlers.fit_pandas(
258
- dataset,
259
- self._sklearn_object,
260
- self.input_cols,
261
- self.label_cols,
262
- self.sample_weight_col
263
- )
264
- elif isinstance(dataset, DataFrame):
265
- self._fit_snowpark(dataset)
266
- else:
267
- raise TypeError(
268
- f"Unexpected dataset type: {type(dataset)}."
269
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
270
- )
255
+ if isinstance(dataset, DataFrame):
256
+ session = dataset._session
257
+ assert session is not None # keep mypy happy
258
+ # Validate that key package version in user workspace are supported in snowflake conda channel
259
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
260
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
261
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
262
+
263
+ # Specify input columns so column pruning will be enforced
264
+ selected_cols = self._get_active_columns()
265
+ if len(selected_cols) > 0:
266
+ dataset = dataset.select(selected_cols)
267
+
268
+ self._snowpark_cols = dataset.select(self.input_cols).columns
269
+
270
+ # If we are already in a stored procedure, no need to kick off another one.
271
+ if SNOWML_SPROC_ENV in os.environ:
272
+ statement_params = telemetry.get_function_usage_statement_params(
273
+ project=_PROJECT,
274
+ subproject=_SUBPROJECT,
275
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Nystroem.__class__.__name__),
276
+ api_calls=[Session.call],
277
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
278
+ )
279
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
280
+ pd_df.columns = dataset.columns
281
+ dataset = pd_df
282
+
283
+ model_trainer = ModelTrainerBuilder.build(
284
+ estimator=self._sklearn_object,
285
+ dataset=dataset,
286
+ input_cols=self.input_cols,
287
+ label_cols=self.label_cols,
288
+ sample_weight_col=self.sample_weight_col,
289
+ autogenerated=self._autogenerated,
290
+ subproject=_SUBPROJECT
291
+ )
292
+ self._sklearn_object = model_trainer.train()
271
293
  self._is_fitted = True
272
294
  self._get_model_signatures(dataset)
273
295
  return self
274
296
 
275
- def _fit_snowpark(self, dataset: DataFrame) -> None:
276
- session = dataset._session
277
- assert session is not None # keep mypy happy
278
- # Validate that key package version in user workspace are supported in snowflake conda channel
279
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
280
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
281
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
282
-
283
- # Specify input columns so column pruning will be enforced
284
- selected_cols = self._get_active_columns()
285
- if len(selected_cols) > 0:
286
- dataset = dataset.select(selected_cols)
287
-
288
- estimator = self._sklearn_object
289
- assert estimator is not None # Keep mypy happy
290
-
291
- self._snowpark_cols = dataset.select(self.input_cols).columns
292
-
293
- self._sklearn_object = self._handlers.fit_snowpark(
294
- dataset,
295
- session,
296
- estimator,
297
- ["snowflake-snowpark-python"] + self._get_dependencies(),
298
- self.input_cols,
299
- self.label_cols,
300
- self.sample_weight_col,
301
- )
302
-
303
297
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
304
298
  if self._drop_input_cols:
305
299
  return []
@@ -487,11 +481,6 @@ class Nystroem(BaseTransformer):
487
481
  subproject=_SUBPROJECT,
488
482
  custom_tags=dict([("autogen", True)]),
489
483
  )
490
- @telemetry.add_stmt_params_to_df(
491
- project=_PROJECT,
492
- subproject=_SUBPROJECT,
493
- custom_tags=dict([("autogen", True)]),
494
- )
495
484
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
496
485
  """Method not supported for this class.
497
486
 
@@ -543,11 +532,6 @@ class Nystroem(BaseTransformer):
543
532
  subproject=_SUBPROJECT,
544
533
  custom_tags=dict([("autogen", True)]),
545
534
  )
546
- @telemetry.add_stmt_params_to_df(
547
- project=_PROJECT,
548
- subproject=_SUBPROJECT,
549
- custom_tags=dict([("autogen", True)]),
550
- )
551
535
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
552
536
  """Apply feature map to X
553
537
  For more details on this function, see [sklearn.kernel_approximation.Nystroem.transform]
@@ -606,7 +590,8 @@ class Nystroem(BaseTransformer):
606
590
  if False:
607
591
  self.fit(dataset)
608
592
  assert self._sklearn_object is not None
609
- return self._sklearn_object.labels_
593
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
594
+ return labels
610
595
  else:
611
596
  raise NotImplementedError
612
597
 
@@ -642,6 +627,7 @@ class Nystroem(BaseTransformer):
642
627
  output_cols = []
643
628
 
644
629
  # Make sure column names are valid snowflake identifiers.
630
+ assert output_cols is not None # Make MyPy happy
645
631
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
646
632
 
647
633
  return rv
@@ -652,11 +638,6 @@ class Nystroem(BaseTransformer):
652
638
  subproject=_SUBPROJECT,
653
639
  custom_tags=dict([("autogen", True)]),
654
640
  )
655
- @telemetry.add_stmt_params_to_df(
656
- project=_PROJECT,
657
- subproject=_SUBPROJECT,
658
- custom_tags=dict([("autogen", True)]),
659
- )
660
641
  def predict_proba(
661
642
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
662
643
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -697,11 +678,6 @@ class Nystroem(BaseTransformer):
697
678
  subproject=_SUBPROJECT,
698
679
  custom_tags=dict([("autogen", True)]),
699
680
  )
700
- @telemetry.add_stmt_params_to_df(
701
- project=_PROJECT,
702
- subproject=_SUBPROJECT,
703
- custom_tags=dict([("autogen", True)]),
704
- )
705
681
  def predict_log_proba(
706
682
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
707
683
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -738,16 +714,6 @@ class Nystroem(BaseTransformer):
738
714
  return output_df
739
715
 
740
716
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
741
- @telemetry.send_api_usage_telemetry(
742
- project=_PROJECT,
743
- subproject=_SUBPROJECT,
744
- custom_tags=dict([("autogen", True)]),
745
- )
746
- @telemetry.add_stmt_params_to_df(
747
- project=_PROJECT,
748
- subproject=_SUBPROJECT,
749
- custom_tags=dict([("autogen", True)]),
750
- )
751
717
  def decision_function(
752
718
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
753
719
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -846,11 +812,6 @@ class Nystroem(BaseTransformer):
846
812
  subproject=_SUBPROJECT,
847
813
  custom_tags=dict([("autogen", True)]),
848
814
  )
849
- @telemetry.add_stmt_params_to_df(
850
- project=_PROJECT,
851
- subproject=_SUBPROJECT,
852
- custom_tags=dict([("autogen", True)]),
853
- )
854
815
  def kneighbors(
855
816
  self,
856
817
  dataset: Union[DataFrame, pd.DataFrame],
@@ -910,18 +871,28 @@ class Nystroem(BaseTransformer):
910
871
  # For classifier, the type of predict is the same as the type of label
911
872
  if self._sklearn_object._estimator_type == 'classifier':
912
873
  # label columns is the desired type for output
913
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
874
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
914
875
  # rename the output columns
915
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
876
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
877
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
878
+ ([] if self._drop_input_cols else inputs)
879
+ + outputs)
880
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
881
+ # For outlier models, returns -1 for outliers and 1 for inliers.
882
+ # Clusterer returns int64 cluster labels.
883
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
884
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
916
885
  self._model_signature_dict["predict"] = ModelSignature(inputs,
917
886
  ([] if self._drop_input_cols else inputs)
918
887
  + outputs)
888
+
919
889
  # For regressor, the type of predict is float64
920
890
  elif self._sklearn_object._estimator_type == 'regressor':
921
891
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
922
892
  self._model_signature_dict["predict"] = ModelSignature(inputs,
923
893
  ([] if self._drop_input_cols else inputs)
924
894
  + outputs)
895
+
925
896
  for prob_func in PROB_FUNCTIONS:
926
897
  if hasattr(self, prob_func):
927
898
  output_cols_prefix: str = f"{prob_func}_"