snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -0,0 +1,331 @@
1
+ import importlib
2
+ import inspect
3
+ import os
4
+ import posixpath
5
+ from typing import Any, Callable, Dict, List, Optional, Tuple
6
+
7
+ import cloudpickle as cp
8
+
9
+ from snowflake.ml._internal import telemetry
10
+ from snowflake.ml._internal.exceptions import (
11
+ error_codes,
12
+ exceptions,
13
+ modeling_error_messages,
14
+ )
15
+ from snowflake.ml._internal.utils import identifier, snowpark_dataframe_utils
16
+ from snowflake.ml._internal.utils.query_result_checker import SqlResultValidator
17
+ from snowflake.ml._internal.utils.temp_file_utils import (
18
+ cleanup_temp_files,
19
+ get_temp_file_path,
20
+ )
21
+ from snowflake.ml.modeling._internal.model_specifications import (
22
+ ModelSpecifications,
23
+ ModelSpecificationsBuilder,
24
+ )
25
+ from snowflake.snowpark import DataFrame, Session, exceptions as snowpark_exceptions
26
+ from snowflake.snowpark._internal.utils import (
27
+ TempObjectType,
28
+ random_name_for_temp_object,
29
+ )
30
+ from snowflake.snowpark.functions import sproc
31
+ from snowflake.snowpark.stored_procedure import StoredProcedure
32
+
33
+ cp.register_pickle_by_value(inspect.getmodule(get_temp_file_path))
34
+ cp.register_pickle_by_value(inspect.getmodule(identifier.get_inferred_name))
35
+
36
+ _PROJECT = "ModelDevelopment"
37
+
38
+
39
+ class SnowparkModelTrainer:
40
+ """
41
+ A class for training models on Snowflake data using the Sproc.
42
+
43
+ TODO (snandamuri): Introduce the concept of executor that would take the training function
44
+ and execute it on the target environments like, local, Snowflake warehouse, or SPCS, etc.
45
+ """
46
+
47
+ def __init__(
48
+ self,
49
+ estimator: object,
50
+ dataset: DataFrame,
51
+ session: Session,
52
+ input_cols: List[str],
53
+ label_cols: Optional[List[str]],
54
+ sample_weight_col: Optional[str],
55
+ autogenerated: bool = False,
56
+ subproject: str = "",
57
+ ) -> None:
58
+ """
59
+ Initializes the SnowparkModelTrainer with a model, a Snowpark DataFrame, feature, and label column names.
60
+
61
+ Args:
62
+ estimator: SKLearn compatible estimator or transformer object.
63
+ dataset: The dataset used for training the model.
64
+ session: Snowflake session object to be used for training.
65
+ input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be used for training.
66
+ label_cols: The name(s) of one or more columns in a DataFrame representing the target variable(s) to learn.
67
+ sample_weight_col: The column name representing the weight of training examples.
68
+ autogenerated: A boolean denoting if the trainer is being used by autogenerated code or not.
69
+ subproject: subproject name to be used in telemetry.
70
+ """
71
+ self.estimator = estimator
72
+ self.dataset = dataset
73
+ self.session = session
74
+ self.input_cols = input_cols
75
+ self.label_cols = label_cols
76
+ self.sample_weight_col = sample_weight_col
77
+ self._autogenerated = autogenerated
78
+ self._subproject = subproject
79
+ self._class_name = estimator.__class__.__name__
80
+
81
+ def _create_temp_stage(self) -> str:
82
+ """
83
+ Creates temporary stage.
84
+
85
+ Returns:
86
+ Temp stage name.
87
+ """
88
+ # Create temp stage to upload pickled model file.
89
+ transform_stage_name = random_name_for_temp_object(TempObjectType.STAGE)
90
+ stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
91
+ SqlResultValidator(session=self.session, query=stage_creation_query).has_dimensions(
92
+ expected_rows=1, expected_cols=1
93
+ ).validate()
94
+ return transform_stage_name
95
+
96
+ def _upload_model_to_stage(self, stage_name: str) -> Tuple[str, str]:
97
+ """
98
+ Util method to pickle and upload the model to a temp Snowflake stage.
99
+
100
+ Args:
101
+ stage_name: Stage name to save model.
102
+
103
+ Returns:
104
+ a tuple containing stage file paths for pickled input model for training and location to store trained
105
+ models(response from training sproc).
106
+ """
107
+ # Create a temp file and dump the transform to that file.
108
+ local_transform_file_name = get_temp_file_path()
109
+ with open(local_transform_file_name, mode="w+b") as local_transform_file:
110
+ cp.dump(self.estimator, local_transform_file)
111
+
112
+ # Use posixpath to construct stage paths
113
+ stage_transform_file_name = posixpath.join(stage_name, os.path.basename(local_transform_file_name))
114
+ stage_result_file_name = posixpath.join(stage_name, os.path.basename(local_transform_file_name))
115
+
116
+ statement_params = telemetry.get_function_usage_statement_params(
117
+ project=_PROJECT,
118
+ subproject=self._subproject,
119
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), self._class_name),
120
+ api_calls=[sproc],
121
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
122
+ )
123
+ # Put locally serialized transform on stage.
124
+ self.session.file.put(
125
+ local_transform_file_name,
126
+ stage_transform_file_name,
127
+ auto_compress=False,
128
+ overwrite=True,
129
+ statement_params=statement_params,
130
+ )
131
+
132
+ cleanup_temp_files([local_transform_file_name])
133
+ return (stage_transform_file_name, stage_result_file_name)
134
+
135
+ def _fetch_model_from_stage(self, dir_path: str, file_name: str, statement_params: Dict[str, str]) -> object:
136
+ """
137
+ Downloads the serialized model from a stage location and unpickels it.
138
+
139
+ Args:
140
+ dir_path: Stage directory path where results are stored.
141
+ file_name: File name with in the directory where results are stored.
142
+ statement_params: Statement params to be attached to the SQL queries issue form this method.
143
+
144
+ Returns:
145
+ Deserialized model object.
146
+ """
147
+ local_result_file_name = get_temp_file_path()
148
+ self.session.file.get(
149
+ posixpath.join(dir_path, file_name),
150
+ local_result_file_name,
151
+ statement_params=statement_params,
152
+ )
153
+
154
+ with open(os.path.join(local_result_file_name, file_name), mode="r+b") as result_file_obj:
155
+ fit_estimator = cp.load(result_file_obj)
156
+
157
+ cleanup_temp_files([local_result_file_name])
158
+ return fit_estimator
159
+
160
+ def _build_fit_wrapper_sproc(
161
+ self,
162
+ model_spec: ModelSpecifications,
163
+ ) -> Callable[[Any, List[str], str, str, List[str], List[str], Optional[str], Dict[str, str]], str]:
164
+ """
165
+ Constructs and returns a python stored procedure function to be used for training model.
166
+
167
+ Args:
168
+ model_spec: ModelSpecifications object that contains model specific information
169
+ like required imports, package dependencies, etc.
170
+
171
+ Returns:
172
+ A callable that can be registered as a stored procedure.
173
+ """
174
+ imports = model_spec.imports # In order for the sproc to not resolve this reference in snowflake.ml
175
+
176
+ def fit_wrapper_function(
177
+ session: Session,
178
+ sql_queries: List[str],
179
+ stage_transform_file_name: str,
180
+ stage_result_file_name: str,
181
+ input_cols: List[str],
182
+ label_cols: List[str],
183
+ sample_weight_col: Optional[str],
184
+ statement_params: Dict[str, str],
185
+ ) -> str:
186
+ import inspect
187
+ import os
188
+
189
+ import cloudpickle as cp
190
+ import pandas as pd
191
+
192
+ for import_name in imports:
193
+ importlib.import_module(import_name)
194
+
195
+ # Execute snowpark queries and obtain the results as pandas dataframe
196
+ # NB: this implies that the result data must fit into memory.
197
+ for query in sql_queries[:-1]:
198
+ _ = session.sql(query).collect(statement_params=statement_params)
199
+ sp_df = session.sql(sql_queries[-1])
200
+ df: pd.DataFrame = sp_df.to_pandas(statement_params=statement_params)
201
+ df.columns = sp_df.columns
202
+
203
+ local_transform_file_name = get_temp_file_path()
204
+
205
+ session.file.get(stage_transform_file_name, local_transform_file_name, statement_params=statement_params)
206
+
207
+ local_transform_file_path = os.path.join(
208
+ local_transform_file_name, os.listdir(local_transform_file_name)[0]
209
+ )
210
+ with open(local_transform_file_path, mode="r+b") as local_transform_file_obj:
211
+ estimator = cp.load(local_transform_file_obj)
212
+
213
+ argspec = inspect.getfullargspec(estimator.fit)
214
+ args = {"X": df[input_cols]}
215
+ if label_cols:
216
+ label_arg_name = "Y" if "Y" in argspec.args else "y"
217
+ args[label_arg_name] = df[label_cols].squeeze()
218
+
219
+ if sample_weight_col is not None and "sample_weight" in argspec.args:
220
+ args["sample_weight"] = df[sample_weight_col].squeeze()
221
+
222
+ estimator.fit(**args)
223
+
224
+ local_result_file_name = get_temp_file_path()
225
+
226
+ with open(local_result_file_name, mode="w+b") as local_result_file_obj:
227
+ cp.dump(estimator, local_result_file_obj)
228
+
229
+ session.file.put(
230
+ local_result_file_name,
231
+ stage_result_file_name,
232
+ auto_compress=False,
233
+ overwrite=True,
234
+ statement_params=statement_params,
235
+ )
236
+
237
+ # Note: you can add something like + "|" + str(df) to the return string
238
+ # to pass debug information to the caller.
239
+ return str(os.path.basename(local_result_file_name))
240
+
241
+ return fit_wrapper_function
242
+
243
+ def _get_fit_wrapper_sproc(self, statement_params: Dict[str, str]) -> StoredProcedure:
244
+ # If the sproc already exists, don't register.
245
+ if not hasattr(self.session, "_FIT_WRAPPER_SPROCS"):
246
+ self.session._FIT_WRAPPER_SPROCS: Dict[str, StoredProcedure] = {} # type: ignore[attr-defined, misc]
247
+
248
+ model_spec = ModelSpecificationsBuilder.build(model=self.estimator)
249
+ fit_sproc_key = model_spec.__class__.__name__
250
+ if fit_sproc_key in self.session._FIT_WRAPPER_SPROCS: # type: ignore[attr-defined]
251
+ fit_sproc: StoredProcedure = self.session._FIT_WRAPPER_SPROCS[fit_sproc_key] # type: ignore[attr-defined]
252
+ return fit_sproc
253
+
254
+ fit_sproc_name = random_name_for_temp_object(TempObjectType.PROCEDURE)
255
+
256
+ fit_wrapper_sproc = self.session.sproc.register(
257
+ func=self._build_fit_wrapper_sproc(model_spec=model_spec),
258
+ is_permanent=False,
259
+ name=fit_sproc_name,
260
+ packages=["snowflake-snowpark-python"] + model_spec.pkgDependencies, # type: ignore[arg-type]
261
+ replace=True,
262
+ session=self.session,
263
+ statement_params=statement_params,
264
+ )
265
+
266
+ self.session._FIT_WRAPPER_SPROCS[fit_sproc_key] = fit_wrapper_sproc # type: ignore[attr-defined]
267
+
268
+ return fit_wrapper_sproc
269
+
270
+ def train(self) -> object:
271
+ """
272
+ Trains the model by pushing down the compute into Snowflake using stored procedures.
273
+
274
+ Returns:
275
+ Trained model
276
+
277
+ Raises:
278
+ e: Raises an exception if any of Snowflake operations fail because of any reason.
279
+ SnowflakeMLException: Know exception are caught and rethrow with more detailed error message.
280
+ """
281
+ dataset = snowpark_dataframe_utils.cast_snowpark_dataframe_column_types(self.dataset)
282
+
283
+ # TODO(snandamuri) : Handle the already in a stored procedure case in the in builder.
284
+
285
+ # Extract query that generated the dataframe. We will need to pass it to the fit procedure.
286
+ queries = dataset.queries["queries"]
287
+
288
+ transform_stage_name = self._create_temp_stage()
289
+ (stage_transform_file_name, stage_result_file_name) = self._upload_model_to_stage(
290
+ stage_name=transform_stage_name
291
+ )
292
+
293
+ # Call fit sproc
294
+ statement_params = telemetry.get_function_usage_statement_params(
295
+ project=_PROJECT,
296
+ subproject=self._subproject,
297
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), self._class_name),
298
+ api_calls=[Session.call],
299
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
300
+ )
301
+
302
+ fit_wrapper_sproc = self._get_fit_wrapper_sproc(statement_params=statement_params)
303
+
304
+ try:
305
+ sproc_export_file_name: str = fit_wrapper_sproc(
306
+ self.session,
307
+ queries,
308
+ stage_transform_file_name,
309
+ stage_result_file_name,
310
+ self.input_cols,
311
+ self.label_cols,
312
+ self.sample_weight_col,
313
+ statement_params,
314
+ )
315
+ except snowpark_exceptions.SnowparkClientException as e:
316
+ if "fit() missing 1 required positional argument: 'y'" in str(e):
317
+ raise exceptions.SnowflakeMLException(
318
+ error_code=error_codes.NOT_FOUND,
319
+ original_exception=RuntimeError(modeling_error_messages.ATTRIBUTE_NOT_SET.format("label_cols")),
320
+ ) from e
321
+ raise e
322
+
323
+ if "|" in sproc_export_file_name:
324
+ fields = sproc_export_file_name.strip().split("|")
325
+ sproc_export_file_name = fields[0]
326
+
327
+ return self._fetch_model_from_stage(
328
+ dir_path=stage_result_file_name,
329
+ file_name=sproc_export_file_name,
330
+ statement_params=statement_params,
331
+ )