snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class BisectingKMeans(BaseTransformer):
|
57
58
|
r"""Bisecting K-Means clustering
|
58
59
|
For more details on this class, see [sklearn.cluster.BisectingKMeans]
|
@@ -60,6 +61,49 @@ class BisectingKMeans(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_clusters: int, default=8
|
64
108
|
The number of clusters to form as well as the number of
|
65
109
|
centroids to generate.
|
@@ -132,35 +176,6 @@ class BisectingKMeans(BaseTransformer):
|
|
132
176
|
largest amount of points assigned to it from all clusters
|
133
177
|
previously calculated. That should work faster than picking by SSE
|
134
178
|
('biggest_inertia') and may produce similar results in most cases.
|
135
|
-
|
136
|
-
input_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain features.
|
138
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
139
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
140
|
-
considered input columns.
|
141
|
-
|
142
|
-
label_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that contain labels.
|
144
|
-
This is a required param for estimators, as there is no way to infer these
|
145
|
-
columns. If this parameter is not specified, then object is fitted without
|
146
|
-
labels (like a transformer).
|
147
|
-
|
148
|
-
output_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or list of strings representing column names that will store the
|
150
|
-
output of predict and transform operations. The length of output_cols must
|
151
|
-
match the expected number of output columns from the specific estimator or
|
152
|
-
transformer class used.
|
153
|
-
If this parameter is not specified, output column names are derived by
|
154
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
155
|
-
column names work for estimator's predict() method, but output_cols must
|
156
|
-
be set explicitly for transformers.
|
157
|
-
|
158
|
-
sample_weight_col: Optional[str]
|
159
|
-
A string representing the column name containing the sample weights.
|
160
|
-
This argument is only required when working with weighted datasets.
|
161
|
-
|
162
|
-
drop_input_cols: Optional[bool], default=False
|
163
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
164
179
|
"""
|
165
180
|
|
166
181
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -179,6 +194,7 @@ class BisectingKMeans(BaseTransformer):
|
|
179
194
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
180
195
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
181
196
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
197
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
182
198
|
drop_input_cols: Optional[bool] = False,
|
183
199
|
sample_weight_col: Optional[str] = None,
|
184
200
|
) -> None:
|
@@ -187,9 +203,10 @@ class BisectingKMeans(BaseTransformer):
|
|
187
203
|
self.set_input_cols(input_cols)
|
188
204
|
self.set_output_cols(output_cols)
|
189
205
|
self.set_label_cols(label_cols)
|
206
|
+
self.set_passthrough_cols(passthrough_cols)
|
190
207
|
self.set_drop_input_cols(drop_input_cols)
|
191
208
|
self.set_sample_weight_col(sample_weight_col)
|
192
|
-
deps = set(
|
209
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
193
210
|
|
194
211
|
self._deps = list(deps)
|
195
212
|
|
@@ -207,13 +224,14 @@ class BisectingKMeans(BaseTransformer):
|
|
207
224
|
args=init_args,
|
208
225
|
klass=sklearn.cluster.BisectingKMeans
|
209
226
|
)
|
210
|
-
self._sklearn_object = sklearn.cluster.BisectingKMeans(
|
227
|
+
self._sklearn_object: Any = sklearn.cluster.BisectingKMeans(
|
211
228
|
**cleaned_up_init_args,
|
212
229
|
)
|
213
230
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
214
231
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
215
232
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
216
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BisectingKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
233
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BisectingKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
234
|
+
self._autogenerated = True
|
217
235
|
|
218
236
|
def _get_rand_id(self) -> str:
|
219
237
|
"""
|
@@ -224,24 +242,6 @@ class BisectingKMeans(BaseTransformer):
|
|
224
242
|
"""
|
225
243
|
return str(uuid4()).replace("-", "_").upper()
|
226
244
|
|
227
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
228
|
-
"""
|
229
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
230
|
-
|
231
|
-
Args:
|
232
|
-
dataset: Input dataset.
|
233
|
-
"""
|
234
|
-
if not self.input_cols:
|
235
|
-
cols = [
|
236
|
-
c for c in dataset.columns
|
237
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
238
|
-
]
|
239
|
-
self.set_input_cols(input_cols=cols)
|
240
|
-
|
241
|
-
if not self.output_cols:
|
242
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
243
|
-
self.set_output_cols(output_cols=cols)
|
244
|
-
|
245
245
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "BisectingKMeans":
|
246
246
|
"""
|
247
247
|
Input columns setter.
|
@@ -287,54 +287,48 @@ class BisectingKMeans(BaseTransformer):
|
|
287
287
|
self
|
288
288
|
"""
|
289
289
|
self._infer_input_output_cols(dataset)
|
290
|
-
if isinstance(dataset,
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
self.
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
290
|
+
if isinstance(dataset, DataFrame):
|
291
|
+
session = dataset._session
|
292
|
+
assert session is not None # keep mypy happy
|
293
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
294
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
295
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
296
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
297
|
+
|
298
|
+
# Specify input columns so column pruning will be enforced
|
299
|
+
selected_cols = self._get_active_columns()
|
300
|
+
if len(selected_cols) > 0:
|
301
|
+
dataset = dataset.select(selected_cols)
|
302
|
+
|
303
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
304
|
+
|
305
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
306
|
+
if SNOWML_SPROC_ENV in os.environ:
|
307
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
308
|
+
project=_PROJECT,
|
309
|
+
subproject=_SUBPROJECT,
|
310
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BisectingKMeans.__class__.__name__),
|
311
|
+
api_calls=[Session.call],
|
312
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
313
|
+
)
|
314
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
315
|
+
pd_df.columns = dataset.columns
|
316
|
+
dataset = pd_df
|
317
|
+
|
318
|
+
model_trainer = ModelTrainerBuilder.build(
|
319
|
+
estimator=self._sklearn_object,
|
320
|
+
dataset=dataset,
|
321
|
+
input_cols=self.input_cols,
|
322
|
+
label_cols=self.label_cols,
|
323
|
+
sample_weight_col=self.sample_weight_col,
|
324
|
+
autogenerated=self._autogenerated,
|
325
|
+
subproject=_SUBPROJECT
|
326
|
+
)
|
327
|
+
self._sklearn_object = model_trainer.train()
|
306
328
|
self._is_fitted = True
|
307
329
|
self._get_model_signatures(dataset)
|
308
330
|
return self
|
309
331
|
|
310
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
311
|
-
session = dataset._session
|
312
|
-
assert session is not None # keep mypy happy
|
313
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
314
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
315
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
316
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
317
|
-
|
318
|
-
# Specify input columns so column pruning will be enforced
|
319
|
-
selected_cols = self._get_active_columns()
|
320
|
-
if len(selected_cols) > 0:
|
321
|
-
dataset = dataset.select(selected_cols)
|
322
|
-
|
323
|
-
estimator = self._sklearn_object
|
324
|
-
assert estimator is not None # Keep mypy happy
|
325
|
-
|
326
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
327
|
-
|
328
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
329
|
-
dataset,
|
330
|
-
session,
|
331
|
-
estimator,
|
332
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
333
|
-
self.input_cols,
|
334
|
-
self.label_cols,
|
335
|
-
self.sample_weight_col,
|
336
|
-
)
|
337
|
-
|
338
332
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
339
333
|
if self._drop_input_cols:
|
340
334
|
return []
|
@@ -522,11 +516,6 @@ class BisectingKMeans(BaseTransformer):
|
|
522
516
|
subproject=_SUBPROJECT,
|
523
517
|
custom_tags=dict([("autogen", True)]),
|
524
518
|
)
|
525
|
-
@telemetry.add_stmt_params_to_df(
|
526
|
-
project=_PROJECT,
|
527
|
-
subproject=_SUBPROJECT,
|
528
|
-
custom_tags=dict([("autogen", True)]),
|
529
|
-
)
|
530
519
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
531
520
|
"""Predict which cluster each sample in X belongs to
|
532
521
|
For more details on this function, see [sklearn.cluster.BisectingKMeans.predict]
|
@@ -580,11 +569,6 @@ class BisectingKMeans(BaseTransformer):
|
|
580
569
|
subproject=_SUBPROJECT,
|
581
570
|
custom_tags=dict([("autogen", True)]),
|
582
571
|
)
|
583
|
-
@telemetry.add_stmt_params_to_df(
|
584
|
-
project=_PROJECT,
|
585
|
-
subproject=_SUBPROJECT,
|
586
|
-
custom_tags=dict([("autogen", True)]),
|
587
|
-
)
|
588
572
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
589
573
|
"""Transform X to a cluster-distance space
|
590
574
|
For more details on this function, see [sklearn.cluster.BisectingKMeans.transform]
|
@@ -645,7 +629,8 @@ class BisectingKMeans(BaseTransformer):
|
|
645
629
|
if True:
|
646
630
|
self.fit(dataset)
|
647
631
|
assert self._sklearn_object is not None
|
648
|
-
|
632
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
633
|
+
return labels
|
649
634
|
else:
|
650
635
|
raise NotImplementedError
|
651
636
|
|
@@ -681,6 +666,7 @@ class BisectingKMeans(BaseTransformer):
|
|
681
666
|
output_cols = []
|
682
667
|
|
683
668
|
# Make sure column names are valid snowflake identifiers.
|
669
|
+
assert output_cols is not None # Make MyPy happy
|
684
670
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
685
671
|
|
686
672
|
return rv
|
@@ -691,11 +677,6 @@ class BisectingKMeans(BaseTransformer):
|
|
691
677
|
subproject=_SUBPROJECT,
|
692
678
|
custom_tags=dict([("autogen", True)]),
|
693
679
|
)
|
694
|
-
@telemetry.add_stmt_params_to_df(
|
695
|
-
project=_PROJECT,
|
696
|
-
subproject=_SUBPROJECT,
|
697
|
-
custom_tags=dict([("autogen", True)]),
|
698
|
-
)
|
699
680
|
def predict_proba(
|
700
681
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
701
682
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -736,11 +717,6 @@ class BisectingKMeans(BaseTransformer):
|
|
736
717
|
subproject=_SUBPROJECT,
|
737
718
|
custom_tags=dict([("autogen", True)]),
|
738
719
|
)
|
739
|
-
@telemetry.add_stmt_params_to_df(
|
740
|
-
project=_PROJECT,
|
741
|
-
subproject=_SUBPROJECT,
|
742
|
-
custom_tags=dict([("autogen", True)]),
|
743
|
-
)
|
744
720
|
def predict_log_proba(
|
745
721
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
746
722
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -777,16 +753,6 @@ class BisectingKMeans(BaseTransformer):
|
|
777
753
|
return output_df
|
778
754
|
|
779
755
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
780
|
-
@telemetry.send_api_usage_telemetry(
|
781
|
-
project=_PROJECT,
|
782
|
-
subproject=_SUBPROJECT,
|
783
|
-
custom_tags=dict([("autogen", True)]),
|
784
|
-
)
|
785
|
-
@telemetry.add_stmt_params_to_df(
|
786
|
-
project=_PROJECT,
|
787
|
-
subproject=_SUBPROJECT,
|
788
|
-
custom_tags=dict([("autogen", True)]),
|
789
|
-
)
|
790
756
|
def decision_function(
|
791
757
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
792
758
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -887,11 +853,6 @@ class BisectingKMeans(BaseTransformer):
|
|
887
853
|
subproject=_SUBPROJECT,
|
888
854
|
custom_tags=dict([("autogen", True)]),
|
889
855
|
)
|
890
|
-
@telemetry.add_stmt_params_to_df(
|
891
|
-
project=_PROJECT,
|
892
|
-
subproject=_SUBPROJECT,
|
893
|
-
custom_tags=dict([("autogen", True)]),
|
894
|
-
)
|
895
856
|
def kneighbors(
|
896
857
|
self,
|
897
858
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -951,18 +912,28 @@ class BisectingKMeans(BaseTransformer):
|
|
951
912
|
# For classifier, the type of predict is the same as the type of label
|
952
913
|
if self._sklearn_object._estimator_type == 'classifier':
|
953
914
|
# label columns is the desired type for output
|
954
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
915
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
955
916
|
# rename the output columns
|
956
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
917
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
918
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
919
|
+
([] if self._drop_input_cols else inputs)
|
920
|
+
+ outputs)
|
921
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
922
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
923
|
+
# Clusterer returns int64 cluster labels.
|
924
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
925
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
957
926
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
958
927
|
([] if self._drop_input_cols else inputs)
|
959
928
|
+ outputs)
|
929
|
+
|
960
930
|
# For regressor, the type of predict is float64
|
961
931
|
elif self._sklearn_object._estimator_type == 'regressor':
|
962
932
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
963
933
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
964
934
|
([] if self._drop_input_cols else inputs)
|
965
935
|
+ outputs)
|
936
|
+
|
966
937
|
for prob_func in PROB_FUNCTIONS:
|
967
938
|
if hasattr(self, prob_func):
|
968
939
|
output_cols_prefix: str = f"{prob_func}_"
|