snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class BisectingKMeans(BaseTransformer):
57
58
  r"""Bisecting K-Means clustering
58
59
  For more details on this class, see [sklearn.cluster.BisectingKMeans]
@@ -60,6 +61,49 @@ class BisectingKMeans(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_clusters: int, default=8
64
108
  The number of clusters to form as well as the number of
65
109
  centroids to generate.
@@ -132,35 +176,6 @@ class BisectingKMeans(BaseTransformer):
132
176
  largest amount of points assigned to it from all clusters
133
177
  previously calculated. That should work faster than picking by SSE
134
178
  ('biggest_inertia') and may produce similar results in most cases.
135
-
136
- input_cols: Optional[Union[str, List[str]]]
137
- A string or list of strings representing column names that contain features.
138
- If this parameter is not specified, all columns in the input DataFrame except
139
- the columns specified by label_cols and sample_weight_col parameters are
140
- considered input columns.
141
-
142
- label_cols: Optional[Union[str, List[str]]]
143
- A string or list of strings representing column names that contain labels.
144
- This is a required param for estimators, as there is no way to infer these
145
- columns. If this parameter is not specified, then object is fitted without
146
- labels (like a transformer).
147
-
148
- output_cols: Optional[Union[str, List[str]]]
149
- A string or list of strings representing column names that will store the
150
- output of predict and transform operations. The length of output_cols must
151
- match the expected number of output columns from the specific estimator or
152
- transformer class used.
153
- If this parameter is not specified, output column names are derived by
154
- adding an OUTPUT_ prefix to the label column names. These inferred output
155
- column names work for estimator's predict() method, but output_cols must
156
- be set explicitly for transformers.
157
-
158
- sample_weight_col: Optional[str]
159
- A string representing the column name containing the sample weights.
160
- This argument is only required when working with weighted datasets.
161
-
162
- drop_input_cols: Optional[bool], default=False
163
- If set, the response of predict(), transform() methods will not contain input columns.
164
179
  """
165
180
 
166
181
  def __init__( # type: ignore[no-untyped-def]
@@ -179,6 +194,7 @@ class BisectingKMeans(BaseTransformer):
179
194
  input_cols: Optional[Union[str, Iterable[str]]] = None,
180
195
  output_cols: Optional[Union[str, Iterable[str]]] = None,
181
196
  label_cols: Optional[Union[str, Iterable[str]]] = None,
197
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
182
198
  drop_input_cols: Optional[bool] = False,
183
199
  sample_weight_col: Optional[str] = None,
184
200
  ) -> None:
@@ -187,9 +203,10 @@ class BisectingKMeans(BaseTransformer):
187
203
  self.set_input_cols(input_cols)
188
204
  self.set_output_cols(output_cols)
189
205
  self.set_label_cols(label_cols)
206
+ self.set_passthrough_cols(passthrough_cols)
190
207
  self.set_drop_input_cols(drop_input_cols)
191
208
  self.set_sample_weight_col(sample_weight_col)
192
- deps = set(SklearnWrapperProvider().dependencies)
209
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
193
210
 
194
211
  self._deps = list(deps)
195
212
 
@@ -207,13 +224,14 @@ class BisectingKMeans(BaseTransformer):
207
224
  args=init_args,
208
225
  klass=sklearn.cluster.BisectingKMeans
209
226
  )
210
- self._sklearn_object = sklearn.cluster.BisectingKMeans(
227
+ self._sklearn_object: Any = sklearn.cluster.BisectingKMeans(
211
228
  **cleaned_up_init_args,
212
229
  )
213
230
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
214
231
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
215
232
  self._snowpark_cols: Optional[List[str]] = self.input_cols
216
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BisectingKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
233
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=BisectingKMeans.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
234
+ self._autogenerated = True
217
235
 
218
236
  def _get_rand_id(self) -> str:
219
237
  """
@@ -224,24 +242,6 @@ class BisectingKMeans(BaseTransformer):
224
242
  """
225
243
  return str(uuid4()).replace("-", "_").upper()
226
244
 
227
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
228
- """
229
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
230
-
231
- Args:
232
- dataset: Input dataset.
233
- """
234
- if not self.input_cols:
235
- cols = [
236
- c for c in dataset.columns
237
- if c not in self.get_label_cols() and c != self.sample_weight_col
238
- ]
239
- self.set_input_cols(input_cols=cols)
240
-
241
- if not self.output_cols:
242
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
243
- self.set_output_cols(output_cols=cols)
244
-
245
245
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "BisectingKMeans":
246
246
  """
247
247
  Input columns setter.
@@ -287,54 +287,48 @@ class BisectingKMeans(BaseTransformer):
287
287
  self
288
288
  """
289
289
  self._infer_input_output_cols(dataset)
290
- if isinstance(dataset, pd.DataFrame):
291
- assert self._sklearn_object is not None # keep mypy happy
292
- self._sklearn_object = self._handlers.fit_pandas(
293
- dataset,
294
- self._sklearn_object,
295
- self.input_cols,
296
- self.label_cols,
297
- self.sample_weight_col
298
- )
299
- elif isinstance(dataset, DataFrame):
300
- self._fit_snowpark(dataset)
301
- else:
302
- raise TypeError(
303
- f"Unexpected dataset type: {type(dataset)}."
304
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
305
- )
290
+ if isinstance(dataset, DataFrame):
291
+ session = dataset._session
292
+ assert session is not None # keep mypy happy
293
+ # Validate that key package version in user workspace are supported in snowflake conda channel
294
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
295
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
296
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
297
+
298
+ # Specify input columns so column pruning will be enforced
299
+ selected_cols = self._get_active_columns()
300
+ if len(selected_cols) > 0:
301
+ dataset = dataset.select(selected_cols)
302
+
303
+ self._snowpark_cols = dataset.select(self.input_cols).columns
304
+
305
+ # If we are already in a stored procedure, no need to kick off another one.
306
+ if SNOWML_SPROC_ENV in os.environ:
307
+ statement_params = telemetry.get_function_usage_statement_params(
308
+ project=_PROJECT,
309
+ subproject=_SUBPROJECT,
310
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BisectingKMeans.__class__.__name__),
311
+ api_calls=[Session.call],
312
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
313
+ )
314
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
315
+ pd_df.columns = dataset.columns
316
+ dataset = pd_df
317
+
318
+ model_trainer = ModelTrainerBuilder.build(
319
+ estimator=self._sklearn_object,
320
+ dataset=dataset,
321
+ input_cols=self.input_cols,
322
+ label_cols=self.label_cols,
323
+ sample_weight_col=self.sample_weight_col,
324
+ autogenerated=self._autogenerated,
325
+ subproject=_SUBPROJECT
326
+ )
327
+ self._sklearn_object = model_trainer.train()
306
328
  self._is_fitted = True
307
329
  self._get_model_signatures(dataset)
308
330
  return self
309
331
 
310
- def _fit_snowpark(self, dataset: DataFrame) -> None:
311
- session = dataset._session
312
- assert session is not None # keep mypy happy
313
- # Validate that key package version in user workspace are supported in snowflake conda channel
314
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
315
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
316
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
317
-
318
- # Specify input columns so column pruning will be enforced
319
- selected_cols = self._get_active_columns()
320
- if len(selected_cols) > 0:
321
- dataset = dataset.select(selected_cols)
322
-
323
- estimator = self._sklearn_object
324
- assert estimator is not None # Keep mypy happy
325
-
326
- self._snowpark_cols = dataset.select(self.input_cols).columns
327
-
328
- self._sklearn_object = self._handlers.fit_snowpark(
329
- dataset,
330
- session,
331
- estimator,
332
- ["snowflake-snowpark-python"] + self._get_dependencies(),
333
- self.input_cols,
334
- self.label_cols,
335
- self.sample_weight_col,
336
- )
337
-
338
332
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
339
333
  if self._drop_input_cols:
340
334
  return []
@@ -522,11 +516,6 @@ class BisectingKMeans(BaseTransformer):
522
516
  subproject=_SUBPROJECT,
523
517
  custom_tags=dict([("autogen", True)]),
524
518
  )
525
- @telemetry.add_stmt_params_to_df(
526
- project=_PROJECT,
527
- subproject=_SUBPROJECT,
528
- custom_tags=dict([("autogen", True)]),
529
- )
530
519
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
531
520
  """Predict which cluster each sample in X belongs to
532
521
  For more details on this function, see [sklearn.cluster.BisectingKMeans.predict]
@@ -580,11 +569,6 @@ class BisectingKMeans(BaseTransformer):
580
569
  subproject=_SUBPROJECT,
581
570
  custom_tags=dict([("autogen", True)]),
582
571
  )
583
- @telemetry.add_stmt_params_to_df(
584
- project=_PROJECT,
585
- subproject=_SUBPROJECT,
586
- custom_tags=dict([("autogen", True)]),
587
- )
588
572
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
589
573
  """Transform X to a cluster-distance space
590
574
  For more details on this function, see [sklearn.cluster.BisectingKMeans.transform]
@@ -645,7 +629,8 @@ class BisectingKMeans(BaseTransformer):
645
629
  if True:
646
630
  self.fit(dataset)
647
631
  assert self._sklearn_object is not None
648
- return self._sklearn_object.labels_
632
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
633
+ return labels
649
634
  else:
650
635
  raise NotImplementedError
651
636
 
@@ -681,6 +666,7 @@ class BisectingKMeans(BaseTransformer):
681
666
  output_cols = []
682
667
 
683
668
  # Make sure column names are valid snowflake identifiers.
669
+ assert output_cols is not None # Make MyPy happy
684
670
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
685
671
 
686
672
  return rv
@@ -691,11 +677,6 @@ class BisectingKMeans(BaseTransformer):
691
677
  subproject=_SUBPROJECT,
692
678
  custom_tags=dict([("autogen", True)]),
693
679
  )
694
- @telemetry.add_stmt_params_to_df(
695
- project=_PROJECT,
696
- subproject=_SUBPROJECT,
697
- custom_tags=dict([("autogen", True)]),
698
- )
699
680
  def predict_proba(
700
681
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
701
682
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -736,11 +717,6 @@ class BisectingKMeans(BaseTransformer):
736
717
  subproject=_SUBPROJECT,
737
718
  custom_tags=dict([("autogen", True)]),
738
719
  )
739
- @telemetry.add_stmt_params_to_df(
740
- project=_PROJECT,
741
- subproject=_SUBPROJECT,
742
- custom_tags=dict([("autogen", True)]),
743
- )
744
720
  def predict_log_proba(
745
721
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
746
722
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -777,16 +753,6 @@ class BisectingKMeans(BaseTransformer):
777
753
  return output_df
778
754
 
779
755
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
780
- @telemetry.send_api_usage_telemetry(
781
- project=_PROJECT,
782
- subproject=_SUBPROJECT,
783
- custom_tags=dict([("autogen", True)]),
784
- )
785
- @telemetry.add_stmt_params_to_df(
786
- project=_PROJECT,
787
- subproject=_SUBPROJECT,
788
- custom_tags=dict([("autogen", True)]),
789
- )
790
756
  def decision_function(
791
757
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
792
758
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -887,11 +853,6 @@ class BisectingKMeans(BaseTransformer):
887
853
  subproject=_SUBPROJECT,
888
854
  custom_tags=dict([("autogen", True)]),
889
855
  )
890
- @telemetry.add_stmt_params_to_df(
891
- project=_PROJECT,
892
- subproject=_SUBPROJECT,
893
- custom_tags=dict([("autogen", True)]),
894
- )
895
856
  def kneighbors(
896
857
  self,
897
858
  dataset: Union[DataFrame, pd.DataFrame],
@@ -951,18 +912,28 @@ class BisectingKMeans(BaseTransformer):
951
912
  # For classifier, the type of predict is the same as the type of label
952
913
  if self._sklearn_object._estimator_type == 'classifier':
953
914
  # label columns is the desired type for output
954
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
915
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
955
916
  # rename the output columns
956
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
917
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
918
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
919
+ ([] if self._drop_input_cols else inputs)
920
+ + outputs)
921
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
922
+ # For outlier models, returns -1 for outliers and 1 for inliers.
923
+ # Clusterer returns int64 cluster labels.
924
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
925
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
957
926
  self._model_signature_dict["predict"] = ModelSignature(inputs,
958
927
  ([] if self._drop_input_cols else inputs)
959
928
  + outputs)
929
+
960
930
  # For regressor, the type of predict is float64
961
931
  elif self._sklearn_object._estimator_type == 'regressor':
962
932
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
963
933
  self._model_signature_dict["predict"] = ModelSignature(inputs,
964
934
  ([] if self._drop_input_cols else inputs)
965
935
  + outputs)
936
+
966
937
  for prob_func in PROB_FUNCTIONS:
967
938
  if hasattr(self, prob_func):
968
939
  output_cols_prefix: str = f"{prob_func}_"