snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.semi_supervised".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LabelSpreading(BaseTransformer):
|
57
58
|
r"""LabelSpreading model for semi-supervised learning
|
58
59
|
For more details on this class, see [sklearn.semi_supervised.LabelSpreading]
|
@@ -60,6 +61,51 @@ class LabelSpreading(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
kernel: {'knn', 'rbf'} or callable, default='rbf'
|
64
110
|
String identifier for kernel function to use or the kernel function
|
65
111
|
itself. Only 'rbf' and 'knn' strings are valid inputs. The function
|
@@ -91,35 +137,6 @@ class LabelSpreading(BaseTransformer):
|
|
91
137
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
92
138
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
93
139
|
for more details.
|
94
|
-
|
95
|
-
input_cols: Optional[Union[str, List[str]]]
|
96
|
-
A string or list of strings representing column names that contain features.
|
97
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
98
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
99
|
-
considered input columns.
|
100
|
-
|
101
|
-
label_cols: Optional[Union[str, List[str]]]
|
102
|
-
A string or list of strings representing column names that contain labels.
|
103
|
-
This is a required param for estimators, as there is no way to infer these
|
104
|
-
columns. If this parameter is not specified, then object is fitted without
|
105
|
-
labels (like a transformer).
|
106
|
-
|
107
|
-
output_cols: Optional[Union[str, List[str]]]
|
108
|
-
A string or list of strings representing column names that will store the
|
109
|
-
output of predict and transform operations. The length of output_cols must
|
110
|
-
match the expected number of output columns from the specific estimator or
|
111
|
-
transformer class used.
|
112
|
-
If this parameter is not specified, output column names are derived by
|
113
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
114
|
-
column names work for estimator's predict() method, but output_cols must
|
115
|
-
be set explicitly for transformers.
|
116
|
-
|
117
|
-
sample_weight_col: Optional[str]
|
118
|
-
A string representing the column name containing the sample weights.
|
119
|
-
This argument is only required when working with weighted datasets.
|
120
|
-
|
121
|
-
drop_input_cols: Optional[bool], default=False
|
122
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
123
140
|
"""
|
124
141
|
|
125
142
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -135,6 +152,7 @@ class LabelSpreading(BaseTransformer):
|
|
135
152
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
136
153
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
137
154
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
155
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
138
156
|
drop_input_cols: Optional[bool] = False,
|
139
157
|
sample_weight_col: Optional[str] = None,
|
140
158
|
) -> None:
|
@@ -143,9 +161,10 @@ class LabelSpreading(BaseTransformer):
|
|
143
161
|
self.set_input_cols(input_cols)
|
144
162
|
self.set_output_cols(output_cols)
|
145
163
|
self.set_label_cols(label_cols)
|
164
|
+
self.set_passthrough_cols(passthrough_cols)
|
146
165
|
self.set_drop_input_cols(drop_input_cols)
|
147
166
|
self.set_sample_weight_col(sample_weight_col)
|
148
|
-
deps = set(
|
167
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
149
168
|
|
150
169
|
self._deps = list(deps)
|
151
170
|
|
@@ -160,13 +179,14 @@ class LabelSpreading(BaseTransformer):
|
|
160
179
|
args=init_args,
|
161
180
|
klass=sklearn.semi_supervised.LabelSpreading
|
162
181
|
)
|
163
|
-
self._sklearn_object = sklearn.semi_supervised.LabelSpreading(
|
182
|
+
self._sklearn_object: Any = sklearn.semi_supervised.LabelSpreading(
|
164
183
|
**cleaned_up_init_args,
|
165
184
|
)
|
166
185
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
167
186
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
168
187
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
169
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LabelSpreading.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
188
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LabelSpreading.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
189
|
+
self._autogenerated = True
|
170
190
|
|
171
191
|
def _get_rand_id(self) -> str:
|
172
192
|
"""
|
@@ -177,24 +197,6 @@ class LabelSpreading(BaseTransformer):
|
|
177
197
|
"""
|
178
198
|
return str(uuid4()).replace("-", "_").upper()
|
179
199
|
|
180
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
181
|
-
"""
|
182
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
183
|
-
|
184
|
-
Args:
|
185
|
-
dataset: Input dataset.
|
186
|
-
"""
|
187
|
-
if not self.input_cols:
|
188
|
-
cols = [
|
189
|
-
c for c in dataset.columns
|
190
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
191
|
-
]
|
192
|
-
self.set_input_cols(input_cols=cols)
|
193
|
-
|
194
|
-
if not self.output_cols:
|
195
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
196
|
-
self.set_output_cols(output_cols=cols)
|
197
|
-
|
198
200
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LabelSpreading":
|
199
201
|
"""
|
200
202
|
Input columns setter.
|
@@ -240,54 +242,48 @@ class LabelSpreading(BaseTransformer):
|
|
240
242
|
self
|
241
243
|
"""
|
242
244
|
self._infer_input_output_cols(dataset)
|
243
|
-
if isinstance(dataset,
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
self.
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
245
|
+
if isinstance(dataset, DataFrame):
|
246
|
+
session = dataset._session
|
247
|
+
assert session is not None # keep mypy happy
|
248
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
249
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
250
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
251
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
252
|
+
|
253
|
+
# Specify input columns so column pruning will be enforced
|
254
|
+
selected_cols = self._get_active_columns()
|
255
|
+
if len(selected_cols) > 0:
|
256
|
+
dataset = dataset.select(selected_cols)
|
257
|
+
|
258
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
259
|
+
|
260
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
261
|
+
if SNOWML_SPROC_ENV in os.environ:
|
262
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
263
|
+
project=_PROJECT,
|
264
|
+
subproject=_SUBPROJECT,
|
265
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LabelSpreading.__class__.__name__),
|
266
|
+
api_calls=[Session.call],
|
267
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
268
|
+
)
|
269
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
270
|
+
pd_df.columns = dataset.columns
|
271
|
+
dataset = pd_df
|
272
|
+
|
273
|
+
model_trainer = ModelTrainerBuilder.build(
|
274
|
+
estimator=self._sklearn_object,
|
275
|
+
dataset=dataset,
|
276
|
+
input_cols=self.input_cols,
|
277
|
+
label_cols=self.label_cols,
|
278
|
+
sample_weight_col=self.sample_weight_col,
|
279
|
+
autogenerated=self._autogenerated,
|
280
|
+
subproject=_SUBPROJECT
|
281
|
+
)
|
282
|
+
self._sklearn_object = model_trainer.train()
|
259
283
|
self._is_fitted = True
|
260
284
|
self._get_model_signatures(dataset)
|
261
285
|
return self
|
262
286
|
|
263
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
264
|
-
session = dataset._session
|
265
|
-
assert session is not None # keep mypy happy
|
266
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
267
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
268
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
269
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
270
|
-
|
271
|
-
# Specify input columns so column pruning will be enforced
|
272
|
-
selected_cols = self._get_active_columns()
|
273
|
-
if len(selected_cols) > 0:
|
274
|
-
dataset = dataset.select(selected_cols)
|
275
|
-
|
276
|
-
estimator = self._sklearn_object
|
277
|
-
assert estimator is not None # Keep mypy happy
|
278
|
-
|
279
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
280
|
-
|
281
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
282
|
-
dataset,
|
283
|
-
session,
|
284
|
-
estimator,
|
285
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
286
|
-
self.input_cols,
|
287
|
-
self.label_cols,
|
288
|
-
self.sample_weight_col,
|
289
|
-
)
|
290
|
-
|
291
287
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
292
288
|
if self._drop_input_cols:
|
293
289
|
return []
|
@@ -475,11 +471,6 @@ class LabelSpreading(BaseTransformer):
|
|
475
471
|
subproject=_SUBPROJECT,
|
476
472
|
custom_tags=dict([("autogen", True)]),
|
477
473
|
)
|
478
|
-
@telemetry.add_stmt_params_to_df(
|
479
|
-
project=_PROJECT,
|
480
|
-
subproject=_SUBPROJECT,
|
481
|
-
custom_tags=dict([("autogen", True)]),
|
482
|
-
)
|
483
474
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
484
475
|
"""Perform inductive inference across the model
|
485
476
|
For more details on this function, see [sklearn.semi_supervised.LabelSpreading.predict]
|
@@ -533,11 +524,6 @@ class LabelSpreading(BaseTransformer):
|
|
533
524
|
subproject=_SUBPROJECT,
|
534
525
|
custom_tags=dict([("autogen", True)]),
|
535
526
|
)
|
536
|
-
@telemetry.add_stmt_params_to_df(
|
537
|
-
project=_PROJECT,
|
538
|
-
subproject=_SUBPROJECT,
|
539
|
-
custom_tags=dict([("autogen", True)]),
|
540
|
-
)
|
541
527
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
542
528
|
"""Method not supported for this class.
|
543
529
|
|
@@ -594,7 +580,8 @@ class LabelSpreading(BaseTransformer):
|
|
594
580
|
if False:
|
595
581
|
self.fit(dataset)
|
596
582
|
assert self._sklearn_object is not None
|
597
|
-
|
583
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
584
|
+
return labels
|
598
585
|
else:
|
599
586
|
raise NotImplementedError
|
600
587
|
|
@@ -630,6 +617,7 @@ class LabelSpreading(BaseTransformer):
|
|
630
617
|
output_cols = []
|
631
618
|
|
632
619
|
# Make sure column names are valid snowflake identifiers.
|
620
|
+
assert output_cols is not None # Make MyPy happy
|
633
621
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
634
622
|
|
635
623
|
return rv
|
@@ -640,11 +628,6 @@ class LabelSpreading(BaseTransformer):
|
|
640
628
|
subproject=_SUBPROJECT,
|
641
629
|
custom_tags=dict([("autogen", True)]),
|
642
630
|
)
|
643
|
-
@telemetry.add_stmt_params_to_df(
|
644
|
-
project=_PROJECT,
|
645
|
-
subproject=_SUBPROJECT,
|
646
|
-
custom_tags=dict([("autogen", True)]),
|
647
|
-
)
|
648
631
|
def predict_proba(
|
649
632
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
650
633
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -687,11 +670,6 @@ class LabelSpreading(BaseTransformer):
|
|
687
670
|
subproject=_SUBPROJECT,
|
688
671
|
custom_tags=dict([("autogen", True)]),
|
689
672
|
)
|
690
|
-
@telemetry.add_stmt_params_to_df(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
673
|
def predict_log_proba(
|
696
674
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
697
675
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -730,16 +708,6 @@ class LabelSpreading(BaseTransformer):
|
|
730
708
|
return output_df
|
731
709
|
|
732
710
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
733
|
-
@telemetry.send_api_usage_telemetry(
|
734
|
-
project=_PROJECT,
|
735
|
-
subproject=_SUBPROJECT,
|
736
|
-
custom_tags=dict([("autogen", True)]),
|
737
|
-
)
|
738
|
-
@telemetry.add_stmt_params_to_df(
|
739
|
-
project=_PROJECT,
|
740
|
-
subproject=_SUBPROJECT,
|
741
|
-
custom_tags=dict([("autogen", True)]),
|
742
|
-
)
|
743
711
|
def decision_function(
|
744
712
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
745
713
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -840,11 +808,6 @@ class LabelSpreading(BaseTransformer):
|
|
840
808
|
subproject=_SUBPROJECT,
|
841
809
|
custom_tags=dict([("autogen", True)]),
|
842
810
|
)
|
843
|
-
@telemetry.add_stmt_params_to_df(
|
844
|
-
project=_PROJECT,
|
845
|
-
subproject=_SUBPROJECT,
|
846
|
-
custom_tags=dict([("autogen", True)]),
|
847
|
-
)
|
848
811
|
def kneighbors(
|
849
812
|
self,
|
850
813
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -904,18 +867,28 @@ class LabelSpreading(BaseTransformer):
|
|
904
867
|
# For classifier, the type of predict is the same as the type of label
|
905
868
|
if self._sklearn_object._estimator_type == 'classifier':
|
906
869
|
# label columns is the desired type for output
|
907
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
870
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
908
871
|
# rename the output columns
|
909
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
872
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
910
873
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
911
874
|
([] if self._drop_input_cols else inputs)
|
912
875
|
+ outputs)
|
876
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
877
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
878
|
+
# Clusterer returns int64 cluster labels.
|
879
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
880
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
881
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
882
|
+
([] if self._drop_input_cols else inputs)
|
883
|
+
+ outputs)
|
884
|
+
|
913
885
|
# For regressor, the type of predict is float64
|
914
886
|
elif self._sklearn_object._estimator_type == 'regressor':
|
915
887
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
916
888
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
917
889
|
([] if self._drop_input_cols else inputs)
|
918
890
|
+ outputs)
|
891
|
+
|
919
892
|
for prob_func in PROB_FUNCTIONS:
|
920
893
|
if hasattr(self, prob_func):
|
921
894
|
output_cols_prefix: str = f"{prob_func}_"
|