snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MultiTaskElasticNet(BaseTransformer):
57
58
  r"""Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer
58
59
  For more details on this class, see [sklearn.linear_model.MultiTaskElasticNet]
@@ -60,6 +61,51 @@ class MultiTaskElasticNet(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alpha: float, default=1.0
64
110
  Constant that multiplies the L1/L2 term. Defaults to 1.0.
65
111
 
@@ -102,35 +148,6 @@ class MultiTaskElasticNet(BaseTransformer):
102
148
  rather than looping over features sequentially by default. This
103
149
  (setting to 'random') often leads to significantly faster convergence
104
150
  especially when tol is higher than 1e-4.
105
-
106
- input_cols: Optional[Union[str, List[str]]]
107
- A string or list of strings representing column names that contain features.
108
- If this parameter is not specified, all columns in the input DataFrame except
109
- the columns specified by label_cols and sample_weight_col parameters are
110
- considered input columns.
111
-
112
- label_cols: Optional[Union[str, List[str]]]
113
- A string or list of strings representing column names that contain labels.
114
- This is a required param for estimators, as there is no way to infer these
115
- columns. If this parameter is not specified, then object is fitted without
116
- labels (like a transformer).
117
-
118
- output_cols: Optional[Union[str, List[str]]]
119
- A string or list of strings representing column names that will store the
120
- output of predict and transform operations. The length of output_cols must
121
- match the expected number of output columns from the specific estimator or
122
- transformer class used.
123
- If this parameter is not specified, output column names are derived by
124
- adding an OUTPUT_ prefix to the label column names. These inferred output
125
- column names work for estimator's predict() method, but output_cols must
126
- be set explicitly for transformers.
127
-
128
- sample_weight_col: Optional[str]
129
- A string representing the column name containing the sample weights.
130
- This argument is only required when working with weighted datasets.
131
-
132
- drop_input_cols: Optional[bool], default=False
133
- If set, the response of predict(), transform() methods will not contain input columns.
134
151
  """
135
152
 
136
153
  def __init__( # type: ignore[no-untyped-def]
@@ -148,6 +165,7 @@ class MultiTaskElasticNet(BaseTransformer):
148
165
  input_cols: Optional[Union[str, Iterable[str]]] = None,
149
166
  output_cols: Optional[Union[str, Iterable[str]]] = None,
150
167
  label_cols: Optional[Union[str, Iterable[str]]] = None,
168
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
151
169
  drop_input_cols: Optional[bool] = False,
152
170
  sample_weight_col: Optional[str] = None,
153
171
  ) -> None:
@@ -156,9 +174,10 @@ class MultiTaskElasticNet(BaseTransformer):
156
174
  self.set_input_cols(input_cols)
157
175
  self.set_output_cols(output_cols)
158
176
  self.set_label_cols(label_cols)
177
+ self.set_passthrough_cols(passthrough_cols)
159
178
  self.set_drop_input_cols(drop_input_cols)
160
179
  self.set_sample_weight_col(sample_weight_col)
161
- deps = set(SklearnWrapperProvider().dependencies)
180
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
162
181
 
163
182
  self._deps = list(deps)
164
183
 
@@ -175,13 +194,14 @@ class MultiTaskElasticNet(BaseTransformer):
175
194
  args=init_args,
176
195
  klass=sklearn.linear_model.MultiTaskElasticNet
177
196
  )
178
- self._sklearn_object = sklearn.linear_model.MultiTaskElasticNet(
197
+ self._sklearn_object: Any = sklearn.linear_model.MultiTaskElasticNet(
179
198
  **cleaned_up_init_args,
180
199
  )
181
200
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
182
201
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
183
202
  self._snowpark_cols: Optional[List[str]] = self.input_cols
184
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
203
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
204
+ self._autogenerated = True
185
205
 
186
206
  def _get_rand_id(self) -> str:
187
207
  """
@@ -192,24 +212,6 @@ class MultiTaskElasticNet(BaseTransformer):
192
212
  """
193
213
  return str(uuid4()).replace("-", "_").upper()
194
214
 
195
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
196
- """
197
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
198
-
199
- Args:
200
- dataset: Input dataset.
201
- """
202
- if not self.input_cols:
203
- cols = [
204
- c for c in dataset.columns
205
- if c not in self.get_label_cols() and c != self.sample_weight_col
206
- ]
207
- self.set_input_cols(input_cols=cols)
208
-
209
- if not self.output_cols:
210
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
211
- self.set_output_cols(output_cols=cols)
212
-
213
215
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MultiTaskElasticNet":
214
216
  """
215
217
  Input columns setter.
@@ -255,54 +257,48 @@ class MultiTaskElasticNet(BaseTransformer):
255
257
  self
256
258
  """
257
259
  self._infer_input_output_cols(dataset)
258
- if isinstance(dataset, pd.DataFrame):
259
- assert self._sklearn_object is not None # keep mypy happy
260
- self._sklearn_object = self._handlers.fit_pandas(
261
- dataset,
262
- self._sklearn_object,
263
- self.input_cols,
264
- self.label_cols,
265
- self.sample_weight_col
266
- )
267
- elif isinstance(dataset, DataFrame):
268
- self._fit_snowpark(dataset)
269
- else:
270
- raise TypeError(
271
- f"Unexpected dataset type: {type(dataset)}."
272
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
273
- )
260
+ if isinstance(dataset, DataFrame):
261
+ session = dataset._session
262
+ assert session is not None # keep mypy happy
263
+ # Validate that key package version in user workspace are supported in snowflake conda channel
264
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
265
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
266
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
267
+
268
+ # Specify input columns so column pruning will be enforced
269
+ selected_cols = self._get_active_columns()
270
+ if len(selected_cols) > 0:
271
+ dataset = dataset.select(selected_cols)
272
+
273
+ self._snowpark_cols = dataset.select(self.input_cols).columns
274
+
275
+ # If we are already in a stored procedure, no need to kick off another one.
276
+ if SNOWML_SPROC_ENV in os.environ:
277
+ statement_params = telemetry.get_function_usage_statement_params(
278
+ project=_PROJECT,
279
+ subproject=_SUBPROJECT,
280
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskElasticNet.__class__.__name__),
281
+ api_calls=[Session.call],
282
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
283
+ )
284
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
285
+ pd_df.columns = dataset.columns
286
+ dataset = pd_df
287
+
288
+ model_trainer = ModelTrainerBuilder.build(
289
+ estimator=self._sklearn_object,
290
+ dataset=dataset,
291
+ input_cols=self.input_cols,
292
+ label_cols=self.label_cols,
293
+ sample_weight_col=self.sample_weight_col,
294
+ autogenerated=self._autogenerated,
295
+ subproject=_SUBPROJECT
296
+ )
297
+ self._sklearn_object = model_trainer.train()
274
298
  self._is_fitted = True
275
299
  self._get_model_signatures(dataset)
276
300
  return self
277
301
 
278
- def _fit_snowpark(self, dataset: DataFrame) -> None:
279
- session = dataset._session
280
- assert session is not None # keep mypy happy
281
- # Validate that key package version in user workspace are supported in snowflake conda channel
282
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
283
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
284
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
285
-
286
- # Specify input columns so column pruning will be enforced
287
- selected_cols = self._get_active_columns()
288
- if len(selected_cols) > 0:
289
- dataset = dataset.select(selected_cols)
290
-
291
- estimator = self._sklearn_object
292
- assert estimator is not None # Keep mypy happy
293
-
294
- self._snowpark_cols = dataset.select(self.input_cols).columns
295
-
296
- self._sklearn_object = self._handlers.fit_snowpark(
297
- dataset,
298
- session,
299
- estimator,
300
- ["snowflake-snowpark-python"] + self._get_dependencies(),
301
- self.input_cols,
302
- self.label_cols,
303
- self.sample_weight_col,
304
- )
305
-
306
302
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
307
303
  if self._drop_input_cols:
308
304
  return []
@@ -490,11 +486,6 @@ class MultiTaskElasticNet(BaseTransformer):
490
486
  subproject=_SUBPROJECT,
491
487
  custom_tags=dict([("autogen", True)]),
492
488
  )
493
- @telemetry.add_stmt_params_to_df(
494
- project=_PROJECT,
495
- subproject=_SUBPROJECT,
496
- custom_tags=dict([("autogen", True)]),
497
- )
498
489
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
499
490
  """Predict using the linear model
500
491
  For more details on this function, see [sklearn.linear_model.MultiTaskElasticNet.predict]
@@ -548,11 +539,6 @@ class MultiTaskElasticNet(BaseTransformer):
548
539
  subproject=_SUBPROJECT,
549
540
  custom_tags=dict([("autogen", True)]),
550
541
  )
551
- @telemetry.add_stmt_params_to_df(
552
- project=_PROJECT,
553
- subproject=_SUBPROJECT,
554
- custom_tags=dict([("autogen", True)]),
555
- )
556
542
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
557
543
  """Method not supported for this class.
558
544
 
@@ -609,7 +595,8 @@ class MultiTaskElasticNet(BaseTransformer):
609
595
  if False:
610
596
  self.fit(dataset)
611
597
  assert self._sklearn_object is not None
612
- return self._sklearn_object.labels_
598
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
599
+ return labels
613
600
  else:
614
601
  raise NotImplementedError
615
602
 
@@ -645,6 +632,7 @@ class MultiTaskElasticNet(BaseTransformer):
645
632
  output_cols = []
646
633
 
647
634
  # Make sure column names are valid snowflake identifiers.
635
+ assert output_cols is not None # Make MyPy happy
648
636
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
649
637
 
650
638
  return rv
@@ -655,11 +643,6 @@ class MultiTaskElasticNet(BaseTransformer):
655
643
  subproject=_SUBPROJECT,
656
644
  custom_tags=dict([("autogen", True)]),
657
645
  )
658
- @telemetry.add_stmt_params_to_df(
659
- project=_PROJECT,
660
- subproject=_SUBPROJECT,
661
- custom_tags=dict([("autogen", True)]),
662
- )
663
646
  def predict_proba(
664
647
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
665
648
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -700,11 +683,6 @@ class MultiTaskElasticNet(BaseTransformer):
700
683
  subproject=_SUBPROJECT,
701
684
  custom_tags=dict([("autogen", True)]),
702
685
  )
703
- @telemetry.add_stmt_params_to_df(
704
- project=_PROJECT,
705
- subproject=_SUBPROJECT,
706
- custom_tags=dict([("autogen", True)]),
707
- )
708
686
  def predict_log_proba(
709
687
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
710
688
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -741,16 +719,6 @@ class MultiTaskElasticNet(BaseTransformer):
741
719
  return output_df
742
720
 
743
721
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
744
- @telemetry.send_api_usage_telemetry(
745
- project=_PROJECT,
746
- subproject=_SUBPROJECT,
747
- custom_tags=dict([("autogen", True)]),
748
- )
749
- @telemetry.add_stmt_params_to_df(
750
- project=_PROJECT,
751
- subproject=_SUBPROJECT,
752
- custom_tags=dict([("autogen", True)]),
753
- )
754
722
  def decision_function(
755
723
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
756
724
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -851,11 +819,6 @@ class MultiTaskElasticNet(BaseTransformer):
851
819
  subproject=_SUBPROJECT,
852
820
  custom_tags=dict([("autogen", True)]),
853
821
  )
854
- @telemetry.add_stmt_params_to_df(
855
- project=_PROJECT,
856
- subproject=_SUBPROJECT,
857
- custom_tags=dict([("autogen", True)]),
858
- )
859
822
  def kneighbors(
860
823
  self,
861
824
  dataset: Union[DataFrame, pd.DataFrame],
@@ -915,18 +878,28 @@ class MultiTaskElasticNet(BaseTransformer):
915
878
  # For classifier, the type of predict is the same as the type of label
916
879
  if self._sklearn_object._estimator_type == 'classifier':
917
880
  # label columns is the desired type for output
918
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
881
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
919
882
  # rename the output columns
920
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
883
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
921
884
  self._model_signature_dict["predict"] = ModelSignature(inputs,
922
885
  ([] if self._drop_input_cols else inputs)
923
886
  + outputs)
887
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
888
+ # For outlier models, returns -1 for outliers and 1 for inliers.
889
+ # Clusterer returns int64 cluster labels.
890
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
891
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
892
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
893
+ ([] if self._drop_input_cols else inputs)
894
+ + outputs)
895
+
924
896
  # For regressor, the type of predict is float64
925
897
  elif self._sklearn_object._estimator_type == 'regressor':
926
898
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
927
899
  self._model_signature_dict["predict"] = ModelSignature(inputs,
928
900
  ([] if self._drop_input_cols else inputs)
929
901
  + outputs)
902
+
930
903
  for prob_func in PROB_FUNCTIONS:
931
904
  if hasattr(self, prob_func):
932
905
  output_cols_prefix: str = f"{prob_func}_"