snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MultiTaskElasticNet(BaseTransformer):
|
57
58
|
r"""Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer
|
58
59
|
For more details on this class, see [sklearn.linear_model.MultiTaskElasticNet]
|
@@ -60,6 +61,51 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Constant that multiplies the L1/L2 term. Defaults to 1.0.
|
65
111
|
|
@@ -102,35 +148,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
102
148
|
rather than looping over features sequentially by default. This
|
103
149
|
(setting to 'random') often leads to significantly faster convergence
|
104
150
|
especially when tol is higher than 1e-4.
|
105
|
-
|
106
|
-
input_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that contain features.
|
108
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
109
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
110
|
-
considered input columns.
|
111
|
-
|
112
|
-
label_cols: Optional[Union[str, List[str]]]
|
113
|
-
A string or list of strings representing column names that contain labels.
|
114
|
-
This is a required param for estimators, as there is no way to infer these
|
115
|
-
columns. If this parameter is not specified, then object is fitted without
|
116
|
-
labels (like a transformer).
|
117
|
-
|
118
|
-
output_cols: Optional[Union[str, List[str]]]
|
119
|
-
A string or list of strings representing column names that will store the
|
120
|
-
output of predict and transform operations. The length of output_cols must
|
121
|
-
match the expected number of output columns from the specific estimator or
|
122
|
-
transformer class used.
|
123
|
-
If this parameter is not specified, output column names are derived by
|
124
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
125
|
-
column names work for estimator's predict() method, but output_cols must
|
126
|
-
be set explicitly for transformers.
|
127
|
-
|
128
|
-
sample_weight_col: Optional[str]
|
129
|
-
A string representing the column name containing the sample weights.
|
130
|
-
This argument is only required when working with weighted datasets.
|
131
|
-
|
132
|
-
drop_input_cols: Optional[bool], default=False
|
133
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
134
151
|
"""
|
135
152
|
|
136
153
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -148,6 +165,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
148
165
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
149
166
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
150
167
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
168
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
151
169
|
drop_input_cols: Optional[bool] = False,
|
152
170
|
sample_weight_col: Optional[str] = None,
|
153
171
|
) -> None:
|
@@ -156,9 +174,10 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
156
174
|
self.set_input_cols(input_cols)
|
157
175
|
self.set_output_cols(output_cols)
|
158
176
|
self.set_label_cols(label_cols)
|
177
|
+
self.set_passthrough_cols(passthrough_cols)
|
159
178
|
self.set_drop_input_cols(drop_input_cols)
|
160
179
|
self.set_sample_weight_col(sample_weight_col)
|
161
|
-
deps = set(
|
180
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
162
181
|
|
163
182
|
self._deps = list(deps)
|
164
183
|
|
@@ -175,13 +194,14 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
175
194
|
args=init_args,
|
176
195
|
klass=sklearn.linear_model.MultiTaskElasticNet
|
177
196
|
)
|
178
|
-
self._sklearn_object = sklearn.linear_model.MultiTaskElasticNet(
|
197
|
+
self._sklearn_object: Any = sklearn.linear_model.MultiTaskElasticNet(
|
179
198
|
**cleaned_up_init_args,
|
180
199
|
)
|
181
200
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
182
201
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
183
202
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
184
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
203
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
204
|
+
self._autogenerated = True
|
185
205
|
|
186
206
|
def _get_rand_id(self) -> str:
|
187
207
|
"""
|
@@ -192,24 +212,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
192
212
|
"""
|
193
213
|
return str(uuid4()).replace("-", "_").upper()
|
194
214
|
|
195
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
196
|
-
"""
|
197
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
198
|
-
|
199
|
-
Args:
|
200
|
-
dataset: Input dataset.
|
201
|
-
"""
|
202
|
-
if not self.input_cols:
|
203
|
-
cols = [
|
204
|
-
c for c in dataset.columns
|
205
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
206
|
-
]
|
207
|
-
self.set_input_cols(input_cols=cols)
|
208
|
-
|
209
|
-
if not self.output_cols:
|
210
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
211
|
-
self.set_output_cols(output_cols=cols)
|
212
|
-
|
213
215
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MultiTaskElasticNet":
|
214
216
|
"""
|
215
217
|
Input columns setter.
|
@@ -255,54 +257,48 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
255
257
|
self
|
256
258
|
"""
|
257
259
|
self._infer_input_output_cols(dataset)
|
258
|
-
if isinstance(dataset,
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
self.
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
260
|
+
if isinstance(dataset, DataFrame):
|
261
|
+
session = dataset._session
|
262
|
+
assert session is not None # keep mypy happy
|
263
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
264
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
265
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
266
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
267
|
+
|
268
|
+
# Specify input columns so column pruning will be enforced
|
269
|
+
selected_cols = self._get_active_columns()
|
270
|
+
if len(selected_cols) > 0:
|
271
|
+
dataset = dataset.select(selected_cols)
|
272
|
+
|
273
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
274
|
+
|
275
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
276
|
+
if SNOWML_SPROC_ENV in os.environ:
|
277
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
278
|
+
project=_PROJECT,
|
279
|
+
subproject=_SUBPROJECT,
|
280
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskElasticNet.__class__.__name__),
|
281
|
+
api_calls=[Session.call],
|
282
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
283
|
+
)
|
284
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
285
|
+
pd_df.columns = dataset.columns
|
286
|
+
dataset = pd_df
|
287
|
+
|
288
|
+
model_trainer = ModelTrainerBuilder.build(
|
289
|
+
estimator=self._sklearn_object,
|
290
|
+
dataset=dataset,
|
291
|
+
input_cols=self.input_cols,
|
292
|
+
label_cols=self.label_cols,
|
293
|
+
sample_weight_col=self.sample_weight_col,
|
294
|
+
autogenerated=self._autogenerated,
|
295
|
+
subproject=_SUBPROJECT
|
296
|
+
)
|
297
|
+
self._sklearn_object = model_trainer.train()
|
274
298
|
self._is_fitted = True
|
275
299
|
self._get_model_signatures(dataset)
|
276
300
|
return self
|
277
301
|
|
278
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
279
|
-
session = dataset._session
|
280
|
-
assert session is not None # keep mypy happy
|
281
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
282
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
283
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
284
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
285
|
-
|
286
|
-
# Specify input columns so column pruning will be enforced
|
287
|
-
selected_cols = self._get_active_columns()
|
288
|
-
if len(selected_cols) > 0:
|
289
|
-
dataset = dataset.select(selected_cols)
|
290
|
-
|
291
|
-
estimator = self._sklearn_object
|
292
|
-
assert estimator is not None # Keep mypy happy
|
293
|
-
|
294
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
295
|
-
|
296
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
297
|
-
dataset,
|
298
|
-
session,
|
299
|
-
estimator,
|
300
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
301
|
-
self.input_cols,
|
302
|
-
self.label_cols,
|
303
|
-
self.sample_weight_col,
|
304
|
-
)
|
305
|
-
|
306
302
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
307
303
|
if self._drop_input_cols:
|
308
304
|
return []
|
@@ -490,11 +486,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
490
486
|
subproject=_SUBPROJECT,
|
491
487
|
custom_tags=dict([("autogen", True)]),
|
492
488
|
)
|
493
|
-
@telemetry.add_stmt_params_to_df(
|
494
|
-
project=_PROJECT,
|
495
|
-
subproject=_SUBPROJECT,
|
496
|
-
custom_tags=dict([("autogen", True)]),
|
497
|
-
)
|
498
489
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
499
490
|
"""Predict using the linear model
|
500
491
|
For more details on this function, see [sklearn.linear_model.MultiTaskElasticNet.predict]
|
@@ -548,11 +539,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
548
539
|
subproject=_SUBPROJECT,
|
549
540
|
custom_tags=dict([("autogen", True)]),
|
550
541
|
)
|
551
|
-
@telemetry.add_stmt_params_to_df(
|
552
|
-
project=_PROJECT,
|
553
|
-
subproject=_SUBPROJECT,
|
554
|
-
custom_tags=dict([("autogen", True)]),
|
555
|
-
)
|
556
542
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
557
543
|
"""Method not supported for this class.
|
558
544
|
|
@@ -609,7 +595,8 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
609
595
|
if False:
|
610
596
|
self.fit(dataset)
|
611
597
|
assert self._sklearn_object is not None
|
612
|
-
|
598
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
599
|
+
return labels
|
613
600
|
else:
|
614
601
|
raise NotImplementedError
|
615
602
|
|
@@ -645,6 +632,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
645
632
|
output_cols = []
|
646
633
|
|
647
634
|
# Make sure column names are valid snowflake identifiers.
|
635
|
+
assert output_cols is not None # Make MyPy happy
|
648
636
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
649
637
|
|
650
638
|
return rv
|
@@ -655,11 +643,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
655
643
|
subproject=_SUBPROJECT,
|
656
644
|
custom_tags=dict([("autogen", True)]),
|
657
645
|
)
|
658
|
-
@telemetry.add_stmt_params_to_df(
|
659
|
-
project=_PROJECT,
|
660
|
-
subproject=_SUBPROJECT,
|
661
|
-
custom_tags=dict([("autogen", True)]),
|
662
|
-
)
|
663
646
|
def predict_proba(
|
664
647
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
665
648
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -700,11 +683,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
700
683
|
subproject=_SUBPROJECT,
|
701
684
|
custom_tags=dict([("autogen", True)]),
|
702
685
|
)
|
703
|
-
@telemetry.add_stmt_params_to_df(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
686
|
def predict_log_proba(
|
709
687
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
710
688
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -741,16 +719,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
741
719
|
return output_df
|
742
720
|
|
743
721
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
744
|
-
@telemetry.send_api_usage_telemetry(
|
745
|
-
project=_PROJECT,
|
746
|
-
subproject=_SUBPROJECT,
|
747
|
-
custom_tags=dict([("autogen", True)]),
|
748
|
-
)
|
749
|
-
@telemetry.add_stmt_params_to_df(
|
750
|
-
project=_PROJECT,
|
751
|
-
subproject=_SUBPROJECT,
|
752
|
-
custom_tags=dict([("autogen", True)]),
|
753
|
-
)
|
754
722
|
def decision_function(
|
755
723
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
756
724
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -851,11 +819,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
851
819
|
subproject=_SUBPROJECT,
|
852
820
|
custom_tags=dict([("autogen", True)]),
|
853
821
|
)
|
854
|
-
@telemetry.add_stmt_params_to_df(
|
855
|
-
project=_PROJECT,
|
856
|
-
subproject=_SUBPROJECT,
|
857
|
-
custom_tags=dict([("autogen", True)]),
|
858
|
-
)
|
859
822
|
def kneighbors(
|
860
823
|
self,
|
861
824
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -915,18 +878,28 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
915
878
|
# For classifier, the type of predict is the same as the type of label
|
916
879
|
if self._sklearn_object._estimator_type == 'classifier':
|
917
880
|
# label columns is the desired type for output
|
918
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
881
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
919
882
|
# rename the output columns
|
920
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
883
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
921
884
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
922
885
|
([] if self._drop_input_cols else inputs)
|
923
886
|
+ outputs)
|
887
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
888
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
889
|
+
# Clusterer returns int64 cluster labels.
|
890
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
891
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
892
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
893
|
+
([] if self._drop_input_cols else inputs)
|
894
|
+
+ outputs)
|
895
|
+
|
924
896
|
# For regressor, the type of predict is float64
|
925
897
|
elif self._sklearn_object._estimator_type == 'regressor':
|
926
898
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
927
899
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
928
900
|
([] if self._drop_input_cols else inputs)
|
929
901
|
+ outputs)
|
902
|
+
|
930
903
|
for prob_func in PROB_FUNCTIONS:
|
931
904
|
if hasattr(self, prob_func):
|
932
905
|
output_cols_prefix: str = f"{prob_func}_"
|