snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class MDS(BaseTransformer):
57
58
  r"""Multidimensional scaling
58
59
  For more details on this class, see [sklearn.manifold.MDS]
@@ -60,6 +61,49 @@ class MDS(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=2
64
108
  Number of dimensions in which to immerse the dissimilarities.
65
109
 
@@ -111,35 +155,6 @@ class MDS(BaseTransformer):
111
155
  normalized_stress: bool or "auto" default=False
112
156
  Whether use and return normed stress value (Stress-1) instead of raw
113
157
  stress calculated by default. Only supported in non-metric MDS.
114
-
115
- input_cols: Optional[Union[str, List[str]]]
116
- A string or list of strings representing column names that contain features.
117
- If this parameter is not specified, all columns in the input DataFrame except
118
- the columns specified by label_cols and sample_weight_col parameters are
119
- considered input columns.
120
-
121
- label_cols: Optional[Union[str, List[str]]]
122
- A string or list of strings representing column names that contain labels.
123
- This is a required param for estimators, as there is no way to infer these
124
- columns. If this parameter is not specified, then object is fitted without
125
- labels (like a transformer).
126
-
127
- output_cols: Optional[Union[str, List[str]]]
128
- A string or list of strings representing column names that will store the
129
- output of predict and transform operations. The length of output_cols must
130
- match the expected number of output columns from the specific estimator or
131
- transformer class used.
132
- If this parameter is not specified, output column names are derived by
133
- adding an OUTPUT_ prefix to the label column names. These inferred output
134
- column names work for estimator's predict() method, but output_cols must
135
- be set explicitly for transformers.
136
-
137
- sample_weight_col: Optional[str]
138
- A string representing the column name containing the sample weights.
139
- This argument is only required when working with weighted datasets.
140
-
141
- drop_input_cols: Optional[bool], default=False
142
- If set, the response of predict(), transform() methods will not contain input columns.
143
158
  """
144
159
 
145
160
  def __init__( # type: ignore[no-untyped-def]
@@ -158,6 +173,7 @@ class MDS(BaseTransformer):
158
173
  input_cols: Optional[Union[str, Iterable[str]]] = None,
159
174
  output_cols: Optional[Union[str, Iterable[str]]] = None,
160
175
  label_cols: Optional[Union[str, Iterable[str]]] = None,
176
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
161
177
  drop_input_cols: Optional[bool] = False,
162
178
  sample_weight_col: Optional[str] = None,
163
179
  ) -> None:
@@ -166,9 +182,10 @@ class MDS(BaseTransformer):
166
182
  self.set_input_cols(input_cols)
167
183
  self.set_output_cols(output_cols)
168
184
  self.set_label_cols(label_cols)
185
+ self.set_passthrough_cols(passthrough_cols)
169
186
  self.set_drop_input_cols(drop_input_cols)
170
187
  self.set_sample_weight_col(sample_weight_col)
171
- deps = set(SklearnWrapperProvider().dependencies)
188
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
172
189
 
173
190
  self._deps = list(deps)
174
191
 
@@ -186,13 +203,14 @@ class MDS(BaseTransformer):
186
203
  args=init_args,
187
204
  klass=sklearn.manifold.MDS
188
205
  )
189
- self._sklearn_object = sklearn.manifold.MDS(
206
+ self._sklearn_object: Any = sklearn.manifold.MDS(
190
207
  **cleaned_up_init_args,
191
208
  )
192
209
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
193
210
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
194
211
  self._snowpark_cols: Optional[List[str]] = self.input_cols
195
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=MDS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
212
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=MDS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
213
+ self._autogenerated = True
196
214
 
197
215
  def _get_rand_id(self) -> str:
198
216
  """
@@ -203,24 +221,6 @@ class MDS(BaseTransformer):
203
221
  """
204
222
  return str(uuid4()).replace("-", "_").upper()
205
223
 
206
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
207
- """
208
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
209
-
210
- Args:
211
- dataset: Input dataset.
212
- """
213
- if not self.input_cols:
214
- cols = [
215
- c for c in dataset.columns
216
- if c not in self.get_label_cols() and c != self.sample_weight_col
217
- ]
218
- self.set_input_cols(input_cols=cols)
219
-
220
- if not self.output_cols:
221
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
222
- self.set_output_cols(output_cols=cols)
223
-
224
224
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "MDS":
225
225
  """
226
226
  Input columns setter.
@@ -266,54 +266,48 @@ class MDS(BaseTransformer):
266
266
  self
267
267
  """
268
268
  self._infer_input_output_cols(dataset)
269
- if isinstance(dataset, pd.DataFrame):
270
- assert self._sklearn_object is not None # keep mypy happy
271
- self._sklearn_object = self._handlers.fit_pandas(
272
- dataset,
273
- self._sklearn_object,
274
- self.input_cols,
275
- self.label_cols,
276
- self.sample_weight_col
277
- )
278
- elif isinstance(dataset, DataFrame):
279
- self._fit_snowpark(dataset)
280
- else:
281
- raise TypeError(
282
- f"Unexpected dataset type: {type(dataset)}."
283
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
284
- )
269
+ if isinstance(dataset, DataFrame):
270
+ session = dataset._session
271
+ assert session is not None # keep mypy happy
272
+ # Validate that key package version in user workspace are supported in snowflake conda channel
273
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
274
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
275
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
276
+
277
+ # Specify input columns so column pruning will be enforced
278
+ selected_cols = self._get_active_columns()
279
+ if len(selected_cols) > 0:
280
+ dataset = dataset.select(selected_cols)
281
+
282
+ self._snowpark_cols = dataset.select(self.input_cols).columns
283
+
284
+ # If we are already in a stored procedure, no need to kick off another one.
285
+ if SNOWML_SPROC_ENV in os.environ:
286
+ statement_params = telemetry.get_function_usage_statement_params(
287
+ project=_PROJECT,
288
+ subproject=_SUBPROJECT,
289
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MDS.__class__.__name__),
290
+ api_calls=[Session.call],
291
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
292
+ )
293
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
294
+ pd_df.columns = dataset.columns
295
+ dataset = pd_df
296
+
297
+ model_trainer = ModelTrainerBuilder.build(
298
+ estimator=self._sklearn_object,
299
+ dataset=dataset,
300
+ input_cols=self.input_cols,
301
+ label_cols=self.label_cols,
302
+ sample_weight_col=self.sample_weight_col,
303
+ autogenerated=self._autogenerated,
304
+ subproject=_SUBPROJECT
305
+ )
306
+ self._sklearn_object = model_trainer.train()
285
307
  self._is_fitted = True
286
308
  self._get_model_signatures(dataset)
287
309
  return self
288
310
 
289
- def _fit_snowpark(self, dataset: DataFrame) -> None:
290
- session = dataset._session
291
- assert session is not None # keep mypy happy
292
- # Validate that key package version in user workspace are supported in snowflake conda channel
293
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
294
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
295
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
296
-
297
- # Specify input columns so column pruning will be enforced
298
- selected_cols = self._get_active_columns()
299
- if len(selected_cols) > 0:
300
- dataset = dataset.select(selected_cols)
301
-
302
- estimator = self._sklearn_object
303
- assert estimator is not None # Keep mypy happy
304
-
305
- self._snowpark_cols = dataset.select(self.input_cols).columns
306
-
307
- self._sklearn_object = self._handlers.fit_snowpark(
308
- dataset,
309
- session,
310
- estimator,
311
- ["snowflake-snowpark-python"] + self._get_dependencies(),
312
- self.input_cols,
313
- self.label_cols,
314
- self.sample_weight_col,
315
- )
316
-
317
311
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
318
312
  if self._drop_input_cols:
319
313
  return []
@@ -501,11 +495,6 @@ class MDS(BaseTransformer):
501
495
  subproject=_SUBPROJECT,
502
496
  custom_tags=dict([("autogen", True)]),
503
497
  )
504
- @telemetry.add_stmt_params_to_df(
505
- project=_PROJECT,
506
- subproject=_SUBPROJECT,
507
- custom_tags=dict([("autogen", True)]),
508
- )
509
498
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
510
499
  """Method not supported for this class.
511
500
 
@@ -557,11 +546,6 @@ class MDS(BaseTransformer):
557
546
  subproject=_SUBPROJECT,
558
547
  custom_tags=dict([("autogen", True)]),
559
548
  )
560
- @telemetry.add_stmt_params_to_df(
561
- project=_PROJECT,
562
- subproject=_SUBPROJECT,
563
- custom_tags=dict([("autogen", True)]),
564
- )
565
549
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
566
550
  """Method not supported for this class.
567
551
 
@@ -618,7 +602,8 @@ class MDS(BaseTransformer):
618
602
  if False:
619
603
  self.fit(dataset)
620
604
  assert self._sklearn_object is not None
621
- return self._sklearn_object.labels_
605
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
606
+ return labels
622
607
  else:
623
608
  raise NotImplementedError
624
609
 
@@ -654,6 +639,7 @@ class MDS(BaseTransformer):
654
639
  output_cols = []
655
640
 
656
641
  # Make sure column names are valid snowflake identifiers.
642
+ assert output_cols is not None # Make MyPy happy
657
643
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
658
644
 
659
645
  return rv
@@ -664,11 +650,6 @@ class MDS(BaseTransformer):
664
650
  subproject=_SUBPROJECT,
665
651
  custom_tags=dict([("autogen", True)]),
666
652
  )
667
- @telemetry.add_stmt_params_to_df(
668
- project=_PROJECT,
669
- subproject=_SUBPROJECT,
670
- custom_tags=dict([("autogen", True)]),
671
- )
672
653
  def predict_proba(
673
654
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
674
655
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -709,11 +690,6 @@ class MDS(BaseTransformer):
709
690
  subproject=_SUBPROJECT,
710
691
  custom_tags=dict([("autogen", True)]),
711
692
  )
712
- @telemetry.add_stmt_params_to_df(
713
- project=_PROJECT,
714
- subproject=_SUBPROJECT,
715
- custom_tags=dict([("autogen", True)]),
716
- )
717
693
  def predict_log_proba(
718
694
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
719
695
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -750,16 +726,6 @@ class MDS(BaseTransformer):
750
726
  return output_df
751
727
 
752
728
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
753
- @telemetry.send_api_usage_telemetry(
754
- project=_PROJECT,
755
- subproject=_SUBPROJECT,
756
- custom_tags=dict([("autogen", True)]),
757
- )
758
- @telemetry.add_stmt_params_to_df(
759
- project=_PROJECT,
760
- subproject=_SUBPROJECT,
761
- custom_tags=dict([("autogen", True)]),
762
- )
763
729
  def decision_function(
764
730
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
765
731
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -858,11 +824,6 @@ class MDS(BaseTransformer):
858
824
  subproject=_SUBPROJECT,
859
825
  custom_tags=dict([("autogen", True)]),
860
826
  )
861
- @telemetry.add_stmt_params_to_df(
862
- project=_PROJECT,
863
- subproject=_SUBPROJECT,
864
- custom_tags=dict([("autogen", True)]),
865
- )
866
827
  def kneighbors(
867
828
  self,
868
829
  dataset: Union[DataFrame, pd.DataFrame],
@@ -922,18 +883,28 @@ class MDS(BaseTransformer):
922
883
  # For classifier, the type of predict is the same as the type of label
923
884
  if self._sklearn_object._estimator_type == 'classifier':
924
885
  # label columns is the desired type for output
925
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
886
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
926
887
  # rename the output columns
927
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
888
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
889
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
890
+ ([] if self._drop_input_cols else inputs)
891
+ + outputs)
892
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
893
+ # For outlier models, returns -1 for outliers and 1 for inliers.
894
+ # Clusterer returns int64 cluster labels.
895
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
896
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
928
897
  self._model_signature_dict["predict"] = ModelSignature(inputs,
929
898
  ([] if self._drop_input_cols else inputs)
930
899
  + outputs)
900
+
931
901
  # For regressor, the type of predict is float64
932
902
  elif self._sklearn_object._estimator_type == 'regressor':
933
903
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
934
904
  self._model_signature_dict["predict"] = ModelSignature(inputs,
935
905
  ([] if self._drop_input_cols else inputs)
936
906
  + outputs)
907
+
937
908
  for prob_func in PROB_FUNCTIONS:
938
909
  if hasattr(self, prob_func):
939
910
  output_cols_prefix: str = f"{prob_func}_"