snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
23
23
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
24
24
  from snowflake.ml._internal import telemetry
25
25
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
26
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
- from snowflake.snowpark import DataFrame
28
+ from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
30
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
30
33
  from snowflake.ml.modeling._internal.estimator_utils import (
31
34
  gather_dependencies,
32
35
  original_estimator_has_callable,
33
36
  transform_snowml_obj_to_sklearn_obj,
34
37
  validate_sklearn_args,
35
38
  )
36
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
37
39
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
40
 
39
41
  from snowflake.ml.model.model_signature import (
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
53
55
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn.", "").split("_")])
54
56
 
55
57
 
56
-
57
58
  class IterativeImputer(BaseTransformer):
58
59
  r"""Multivariate imputer that estimates each feature from all the others
59
60
  For more details on this class, see [sklearn.impute.IterativeImputer]
@@ -61,6 +62,49 @@ class IterativeImputer(BaseTransformer):
61
62
 
62
63
  Parameters
63
64
  ----------
65
+
66
+ input_cols: Optional[Union[str, List[str]]]
67
+ A string or list of strings representing column names that contain features.
68
+ If this parameter is not specified, all columns in the input DataFrame except
69
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
70
+ parameters are considered input columns. Input columns can also be set after
71
+ initialization with the `set_input_cols` method.
72
+
73
+ label_cols: Optional[Union[str, List[str]]]
74
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
75
+
76
+ output_cols: Optional[Union[str, List[str]]]
77
+ A string or list of strings representing column names that will store the
78
+ output of predict and transform operations. The length of output_cols must
79
+ match the expected number of output columns from the specific predictor or
80
+ transformer class used.
81
+ If you omit this parameter, output column names are derived by adding an
82
+ OUTPUT_ prefix to the label column names for supervised estimators, or
83
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
84
+ work for predictors, but output_cols must be set explicitly for transformers.
85
+ In general, explicitly specifying output column names is clearer, especially
86
+ if you don’t specify the input column names.
87
+ To transform in place, pass the same names for input_cols and output_cols.
88
+ be set explicitly for transformers. Output columns can also be set after
89
+ initialization with the `set_output_cols` method.
90
+
91
+ sample_weight_col: Optional[str]
92
+ A string representing the column name containing the sample weights.
93
+ This argument is only required when working with weighted datasets. Sample
94
+ weight column can also be set after initialization with the
95
+ `set_sample_weight_col` method.
96
+
97
+ passthrough_cols: Optional[Union[str, List[str]]]
98
+ A string or a list of strings indicating column names to be excluded from any
99
+ operations (such as train, transform, or inference). These specified column(s)
100
+ will remain untouched throughout the process. This option is helpful in scenarios
101
+ requiring automatic input_cols inference, but need to avoid using specific
102
+ columns, like index columns, during training or inference. Passthrough columns
103
+ can also be set after initialization with the `set_passthrough_cols` method.
104
+
105
+ drop_input_cols: Optional[bool], default=False
106
+ If set, the response of predict(), transform() methods will not contain input columns.
107
+
64
108
  estimator: estimator object, default=BayesianRidge()
65
109
  The estimator to use at each step of the round-robin imputation.
66
110
  If `sample_posterior=True`, the estimator must support
@@ -162,35 +206,6 @@ class IterativeImputer(BaseTransformer):
162
206
  The imputed value is always `0` except when
163
207
  `initial_strategy="constant"` in which case `fill_value` will be
164
208
  used instead.
165
-
166
- input_cols: Optional[Union[str, List[str]]]
167
- A string or list of strings representing column names that contain features.
168
- If this parameter is not specified, all columns in the input DataFrame except
169
- the columns specified by label_cols and sample_weight_col parameters are
170
- considered input columns.
171
-
172
- label_cols: Optional[Union[str, List[str]]]
173
- A string or list of strings representing column names that contain labels.
174
- This is a required param for estimators, as there is no way to infer these
175
- columns. If this parameter is not specified, then object is fitted without
176
- labels (like a transformer).
177
-
178
- output_cols: Optional[Union[str, List[str]]]
179
- A string or list of strings representing column names that will store the
180
- output of predict and transform operations. The length of output_cols must
181
- match the expected number of output columns from the specific estimator or
182
- transformer class used.
183
- If this parameter is not specified, output column names are derived by
184
- adding an OUTPUT_ prefix to the label column names. These inferred output
185
- column names work for estimator's predict() method, but output_cols must
186
- be set explicitly for transformers.
187
-
188
- sample_weight_col: Optional[str]
189
- A string representing the column name containing the sample weights.
190
- This argument is only required when working with weighted datasets.
191
-
192
- drop_input_cols: Optional[bool], default=False
193
- If set, the response of predict(), transform() methods will not contain input columns.
194
209
  """
195
210
 
196
211
  def __init__( # type: ignore[no-untyped-def]
@@ -215,6 +230,7 @@ class IterativeImputer(BaseTransformer):
215
230
  input_cols: Optional[Union[str, Iterable[str]]] = None,
216
231
  output_cols: Optional[Union[str, Iterable[str]]] = None,
217
232
  label_cols: Optional[Union[str, Iterable[str]]] = None,
233
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
218
234
  drop_input_cols: Optional[bool] = False,
219
235
  sample_weight_col: Optional[str] = None,
220
236
  ) -> None:
@@ -223,9 +239,10 @@ class IterativeImputer(BaseTransformer):
223
239
  self.set_input_cols(input_cols)
224
240
  self.set_output_cols(output_cols)
225
241
  self.set_label_cols(label_cols)
242
+ self.set_passthrough_cols(passthrough_cols)
226
243
  self.set_drop_input_cols(drop_input_cols)
227
244
  self.set_sample_weight_col(sample_weight_col)
228
- deps = set(SklearnWrapperProvider().dependencies)
245
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
229
246
  deps = deps | gather_dependencies(estimator)
230
247
  self._deps = list(deps)
231
248
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -249,13 +266,14 @@ class IterativeImputer(BaseTransformer):
249
266
  args=init_args,
250
267
  klass=sklearn.impute.IterativeImputer
251
268
  )
252
- self._sklearn_object = sklearn.impute.IterativeImputer(
269
+ self._sklearn_object: Any = sklearn.impute.IterativeImputer(
253
270
  **cleaned_up_init_args,
254
271
  )
255
272
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
256
273
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
257
274
  self._snowpark_cols: Optional[List[str]] = self.input_cols
258
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
275
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
276
+ self._autogenerated = True
259
277
 
260
278
  def _get_rand_id(self) -> str:
261
279
  """
@@ -266,24 +284,6 @@ class IterativeImputer(BaseTransformer):
266
284
  """
267
285
  return str(uuid4()).replace("-", "_").upper()
268
286
 
269
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
270
- """
271
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
272
-
273
- Args:
274
- dataset: Input dataset.
275
- """
276
- if not self.input_cols:
277
- cols = [
278
- c for c in dataset.columns
279
- if c not in self.get_label_cols() and c != self.sample_weight_col
280
- ]
281
- self.set_input_cols(input_cols=cols)
282
-
283
- if not self.output_cols:
284
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
285
- self.set_output_cols(output_cols=cols)
286
-
287
287
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "IterativeImputer":
288
288
  """
289
289
  Input columns setter.
@@ -329,54 +329,48 @@ class IterativeImputer(BaseTransformer):
329
329
  self
330
330
  """
331
331
  self._infer_input_output_cols(dataset)
332
- if isinstance(dataset, pd.DataFrame):
333
- assert self._sklearn_object is not None # keep mypy happy
334
- self._sklearn_object = self._handlers.fit_pandas(
335
- dataset,
336
- self._sklearn_object,
337
- self.input_cols,
338
- self.label_cols,
339
- self.sample_weight_col
340
- )
341
- elif isinstance(dataset, DataFrame):
342
- self._fit_snowpark(dataset)
343
- else:
344
- raise TypeError(
345
- f"Unexpected dataset type: {type(dataset)}."
346
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
347
- )
332
+ if isinstance(dataset, DataFrame):
333
+ session = dataset._session
334
+ assert session is not None # keep mypy happy
335
+ # Validate that key package version in user workspace are supported in snowflake conda channel
336
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
337
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
338
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
339
+
340
+ # Specify input columns so column pruning will be enforced
341
+ selected_cols = self._get_active_columns()
342
+ if len(selected_cols) > 0:
343
+ dataset = dataset.select(selected_cols)
344
+
345
+ self._snowpark_cols = dataset.select(self.input_cols).columns
346
+
347
+ # If we are already in a stored procedure, no need to kick off another one.
348
+ if SNOWML_SPROC_ENV in os.environ:
349
+ statement_params = telemetry.get_function_usage_statement_params(
350
+ project=_PROJECT,
351
+ subproject=_SUBPROJECT,
352
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IterativeImputer.__class__.__name__),
353
+ api_calls=[Session.call],
354
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
355
+ )
356
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
357
+ pd_df.columns = dataset.columns
358
+ dataset = pd_df
359
+
360
+ model_trainer = ModelTrainerBuilder.build(
361
+ estimator=self._sklearn_object,
362
+ dataset=dataset,
363
+ input_cols=self.input_cols,
364
+ label_cols=self.label_cols,
365
+ sample_weight_col=self.sample_weight_col,
366
+ autogenerated=self._autogenerated,
367
+ subproject=_SUBPROJECT
368
+ )
369
+ self._sklearn_object = model_trainer.train()
348
370
  self._is_fitted = True
349
371
  self._get_model_signatures(dataset)
350
372
  return self
351
373
 
352
- def _fit_snowpark(self, dataset: DataFrame) -> None:
353
- session = dataset._session
354
- assert session is not None # keep mypy happy
355
- # Validate that key package version in user workspace are supported in snowflake conda channel
356
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
357
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
358
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
359
-
360
- # Specify input columns so column pruning will be enforced
361
- selected_cols = self._get_active_columns()
362
- if len(selected_cols) > 0:
363
- dataset = dataset.select(selected_cols)
364
-
365
- estimator = self._sklearn_object
366
- assert estimator is not None # Keep mypy happy
367
-
368
- self._snowpark_cols = dataset.select(self.input_cols).columns
369
-
370
- self._sklearn_object = self._handlers.fit_snowpark(
371
- dataset,
372
- session,
373
- estimator,
374
- ["snowflake-snowpark-python"] + self._get_dependencies(),
375
- self.input_cols,
376
- self.label_cols,
377
- self.sample_weight_col,
378
- )
379
-
380
374
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
381
375
  if self._drop_input_cols:
382
376
  return []
@@ -564,11 +558,6 @@ class IterativeImputer(BaseTransformer):
564
558
  subproject=_SUBPROJECT,
565
559
  custom_tags=dict([("autogen", True)]),
566
560
  )
567
- @telemetry.add_stmt_params_to_df(
568
- project=_PROJECT,
569
- subproject=_SUBPROJECT,
570
- custom_tags=dict([("autogen", True)]),
571
- )
572
561
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
573
562
  """Method not supported for this class.
574
563
 
@@ -620,11 +609,6 @@ class IterativeImputer(BaseTransformer):
620
609
  subproject=_SUBPROJECT,
621
610
  custom_tags=dict([("autogen", True)]),
622
611
  )
623
- @telemetry.add_stmt_params_to_df(
624
- project=_PROJECT,
625
- subproject=_SUBPROJECT,
626
- custom_tags=dict([("autogen", True)]),
627
- )
628
612
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
629
613
  """Impute all missing values in `X`
630
614
  For more details on this function, see [sklearn.impute.IterativeImputer.transform]
@@ -683,7 +667,8 @@ class IterativeImputer(BaseTransformer):
683
667
  if False:
684
668
  self.fit(dataset)
685
669
  assert self._sklearn_object is not None
686
- return self._sklearn_object.labels_
670
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
671
+ return labels
687
672
  else:
688
673
  raise NotImplementedError
689
674
 
@@ -719,6 +704,7 @@ class IterativeImputer(BaseTransformer):
719
704
  output_cols = []
720
705
 
721
706
  # Make sure column names are valid snowflake identifiers.
707
+ assert output_cols is not None # Make MyPy happy
722
708
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
723
709
 
724
710
  return rv
@@ -729,11 +715,6 @@ class IterativeImputer(BaseTransformer):
729
715
  subproject=_SUBPROJECT,
730
716
  custom_tags=dict([("autogen", True)]),
731
717
  )
732
- @telemetry.add_stmt_params_to_df(
733
- project=_PROJECT,
734
- subproject=_SUBPROJECT,
735
- custom_tags=dict([("autogen", True)]),
736
- )
737
718
  def predict_proba(
738
719
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
739
720
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -774,11 +755,6 @@ class IterativeImputer(BaseTransformer):
774
755
  subproject=_SUBPROJECT,
775
756
  custom_tags=dict([("autogen", True)]),
776
757
  )
777
- @telemetry.add_stmt_params_to_df(
778
- project=_PROJECT,
779
- subproject=_SUBPROJECT,
780
- custom_tags=dict([("autogen", True)]),
781
- )
782
758
  def predict_log_proba(
783
759
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
784
760
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -815,16 +791,6 @@ class IterativeImputer(BaseTransformer):
815
791
  return output_df
816
792
 
817
793
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
818
- @telemetry.send_api_usage_telemetry(
819
- project=_PROJECT,
820
- subproject=_SUBPROJECT,
821
- custom_tags=dict([("autogen", True)]),
822
- )
823
- @telemetry.add_stmt_params_to_df(
824
- project=_PROJECT,
825
- subproject=_SUBPROJECT,
826
- custom_tags=dict([("autogen", True)]),
827
- )
828
794
  def decision_function(
829
795
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
830
796
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -923,11 +889,6 @@ class IterativeImputer(BaseTransformer):
923
889
  subproject=_SUBPROJECT,
924
890
  custom_tags=dict([("autogen", True)]),
925
891
  )
926
- @telemetry.add_stmt_params_to_df(
927
- project=_PROJECT,
928
- subproject=_SUBPROJECT,
929
- custom_tags=dict([("autogen", True)]),
930
- )
931
892
  def kneighbors(
932
893
  self,
933
894
  dataset: Union[DataFrame, pd.DataFrame],
@@ -987,18 +948,28 @@ class IterativeImputer(BaseTransformer):
987
948
  # For classifier, the type of predict is the same as the type of label
988
949
  if self._sklearn_object._estimator_type == 'classifier':
989
950
  # label columns is the desired type for output
990
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
951
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
991
952
  # rename the output columns
992
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
953
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
954
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
955
+ ([] if self._drop_input_cols else inputs)
956
+ + outputs)
957
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
958
+ # For outlier models, returns -1 for outliers and 1 for inliers.
959
+ # Clusterer returns int64 cluster labels.
960
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
961
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
993
962
  self._model_signature_dict["predict"] = ModelSignature(inputs,
994
963
  ([] if self._drop_input_cols else inputs)
995
964
  + outputs)
965
+
996
966
  # For regressor, the type of predict is float64
997
967
  elif self._sklearn_object._estimator_type == 'regressor':
998
968
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
999
969
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1000
970
  ([] if self._drop_input_cols else inputs)
1001
971
  + outputs)
972
+
1002
973
  for prob_func in PROB_FUNCTIONS:
1003
974
  if hasattr(self, prob_func):
1004
975
  output_cols_prefix: str = f"{prob_func}_"