snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
|
|
23
23
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
24
24
|
from snowflake.ml._internal import telemetry
|
25
25
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
26
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
|
-
from snowflake.snowpark import DataFrame
|
28
|
+
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
30
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
30
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
31
34
|
gather_dependencies,
|
32
35
|
original_estimator_has_callable,
|
33
36
|
transform_snowml_obj_to_sklearn_obj,
|
34
37
|
validate_sklearn_args,
|
35
38
|
)
|
36
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
37
39
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
38
40
|
|
39
41
|
from snowflake.ml.model.model_signature import (
|
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
|
|
53
55
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn.", "").split("_")])
|
54
56
|
|
55
57
|
|
56
|
-
|
57
58
|
class IterativeImputer(BaseTransformer):
|
58
59
|
r"""Multivariate imputer that estimates each feature from all the others
|
59
60
|
For more details on this class, see [sklearn.impute.IterativeImputer]
|
@@ -61,6 +62,49 @@ class IterativeImputer(BaseTransformer):
|
|
61
62
|
|
62
63
|
Parameters
|
63
64
|
----------
|
65
|
+
|
66
|
+
input_cols: Optional[Union[str, List[str]]]
|
67
|
+
A string or list of strings representing column names that contain features.
|
68
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
69
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
70
|
+
parameters are considered input columns. Input columns can also be set after
|
71
|
+
initialization with the `set_input_cols` method.
|
72
|
+
|
73
|
+
label_cols: Optional[Union[str, List[str]]]
|
74
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
64
108
|
estimator: estimator object, default=BayesianRidge()
|
65
109
|
The estimator to use at each step of the round-robin imputation.
|
66
110
|
If `sample_posterior=True`, the estimator must support
|
@@ -162,35 +206,6 @@ class IterativeImputer(BaseTransformer):
|
|
162
206
|
The imputed value is always `0` except when
|
163
207
|
`initial_strategy="constant"` in which case `fill_value` will be
|
164
208
|
used instead.
|
165
|
-
|
166
|
-
input_cols: Optional[Union[str, List[str]]]
|
167
|
-
A string or list of strings representing column names that contain features.
|
168
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
169
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
170
|
-
considered input columns.
|
171
|
-
|
172
|
-
label_cols: Optional[Union[str, List[str]]]
|
173
|
-
A string or list of strings representing column names that contain labels.
|
174
|
-
This is a required param for estimators, as there is no way to infer these
|
175
|
-
columns. If this parameter is not specified, then object is fitted without
|
176
|
-
labels (like a transformer).
|
177
|
-
|
178
|
-
output_cols: Optional[Union[str, List[str]]]
|
179
|
-
A string or list of strings representing column names that will store the
|
180
|
-
output of predict and transform operations. The length of output_cols must
|
181
|
-
match the expected number of output columns from the specific estimator or
|
182
|
-
transformer class used.
|
183
|
-
If this parameter is not specified, output column names are derived by
|
184
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
185
|
-
column names work for estimator's predict() method, but output_cols must
|
186
|
-
be set explicitly for transformers.
|
187
|
-
|
188
|
-
sample_weight_col: Optional[str]
|
189
|
-
A string representing the column name containing the sample weights.
|
190
|
-
This argument is only required when working with weighted datasets.
|
191
|
-
|
192
|
-
drop_input_cols: Optional[bool], default=False
|
193
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
194
209
|
"""
|
195
210
|
|
196
211
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -215,6 +230,7 @@ class IterativeImputer(BaseTransformer):
|
|
215
230
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
216
231
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
217
232
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
233
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
218
234
|
drop_input_cols: Optional[bool] = False,
|
219
235
|
sample_weight_col: Optional[str] = None,
|
220
236
|
) -> None:
|
@@ -223,9 +239,10 @@ class IterativeImputer(BaseTransformer):
|
|
223
239
|
self.set_input_cols(input_cols)
|
224
240
|
self.set_output_cols(output_cols)
|
225
241
|
self.set_label_cols(label_cols)
|
242
|
+
self.set_passthrough_cols(passthrough_cols)
|
226
243
|
self.set_drop_input_cols(drop_input_cols)
|
227
244
|
self.set_sample_weight_col(sample_weight_col)
|
228
|
-
deps = set(
|
245
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
229
246
|
deps = deps | gather_dependencies(estimator)
|
230
247
|
self._deps = list(deps)
|
231
248
|
estimator = transform_snowml_obj_to_sklearn_obj(estimator)
|
@@ -249,13 +266,14 @@ class IterativeImputer(BaseTransformer):
|
|
249
266
|
args=init_args,
|
250
267
|
klass=sklearn.impute.IterativeImputer
|
251
268
|
)
|
252
|
-
self._sklearn_object = sklearn.impute.IterativeImputer(
|
269
|
+
self._sklearn_object: Any = sklearn.impute.IterativeImputer(
|
253
270
|
**cleaned_up_init_args,
|
254
271
|
)
|
255
272
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
256
273
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
257
274
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
258
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
275
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=IterativeImputer.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
276
|
+
self._autogenerated = True
|
259
277
|
|
260
278
|
def _get_rand_id(self) -> str:
|
261
279
|
"""
|
@@ -266,24 +284,6 @@ class IterativeImputer(BaseTransformer):
|
|
266
284
|
"""
|
267
285
|
return str(uuid4()).replace("-", "_").upper()
|
268
286
|
|
269
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
270
|
-
"""
|
271
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
272
|
-
|
273
|
-
Args:
|
274
|
-
dataset: Input dataset.
|
275
|
-
"""
|
276
|
-
if not self.input_cols:
|
277
|
-
cols = [
|
278
|
-
c for c in dataset.columns
|
279
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
280
|
-
]
|
281
|
-
self.set_input_cols(input_cols=cols)
|
282
|
-
|
283
|
-
if not self.output_cols:
|
284
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
285
|
-
self.set_output_cols(output_cols=cols)
|
286
|
-
|
287
287
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "IterativeImputer":
|
288
288
|
"""
|
289
289
|
Input columns setter.
|
@@ -329,54 +329,48 @@ class IterativeImputer(BaseTransformer):
|
|
329
329
|
self
|
330
330
|
"""
|
331
331
|
self._infer_input_output_cols(dataset)
|
332
|
-
if isinstance(dataset,
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
self.
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
347
|
-
|
332
|
+
if isinstance(dataset, DataFrame):
|
333
|
+
session = dataset._session
|
334
|
+
assert session is not None # keep mypy happy
|
335
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
336
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
337
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
338
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
339
|
+
|
340
|
+
# Specify input columns so column pruning will be enforced
|
341
|
+
selected_cols = self._get_active_columns()
|
342
|
+
if len(selected_cols) > 0:
|
343
|
+
dataset = dataset.select(selected_cols)
|
344
|
+
|
345
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
346
|
+
|
347
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
348
|
+
if SNOWML_SPROC_ENV in os.environ:
|
349
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
350
|
+
project=_PROJECT,
|
351
|
+
subproject=_SUBPROJECT,
|
352
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IterativeImputer.__class__.__name__),
|
353
|
+
api_calls=[Session.call],
|
354
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
355
|
+
)
|
356
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
357
|
+
pd_df.columns = dataset.columns
|
358
|
+
dataset = pd_df
|
359
|
+
|
360
|
+
model_trainer = ModelTrainerBuilder.build(
|
361
|
+
estimator=self._sklearn_object,
|
362
|
+
dataset=dataset,
|
363
|
+
input_cols=self.input_cols,
|
364
|
+
label_cols=self.label_cols,
|
365
|
+
sample_weight_col=self.sample_weight_col,
|
366
|
+
autogenerated=self._autogenerated,
|
367
|
+
subproject=_SUBPROJECT
|
368
|
+
)
|
369
|
+
self._sklearn_object = model_trainer.train()
|
348
370
|
self._is_fitted = True
|
349
371
|
self._get_model_signatures(dataset)
|
350
372
|
return self
|
351
373
|
|
352
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
353
|
-
session = dataset._session
|
354
|
-
assert session is not None # keep mypy happy
|
355
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
356
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
357
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
358
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
359
|
-
|
360
|
-
# Specify input columns so column pruning will be enforced
|
361
|
-
selected_cols = self._get_active_columns()
|
362
|
-
if len(selected_cols) > 0:
|
363
|
-
dataset = dataset.select(selected_cols)
|
364
|
-
|
365
|
-
estimator = self._sklearn_object
|
366
|
-
assert estimator is not None # Keep mypy happy
|
367
|
-
|
368
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
369
|
-
|
370
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
371
|
-
dataset,
|
372
|
-
session,
|
373
|
-
estimator,
|
374
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
375
|
-
self.input_cols,
|
376
|
-
self.label_cols,
|
377
|
-
self.sample_weight_col,
|
378
|
-
)
|
379
|
-
|
380
374
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
381
375
|
if self._drop_input_cols:
|
382
376
|
return []
|
@@ -564,11 +558,6 @@ class IterativeImputer(BaseTransformer):
|
|
564
558
|
subproject=_SUBPROJECT,
|
565
559
|
custom_tags=dict([("autogen", True)]),
|
566
560
|
)
|
567
|
-
@telemetry.add_stmt_params_to_df(
|
568
|
-
project=_PROJECT,
|
569
|
-
subproject=_SUBPROJECT,
|
570
|
-
custom_tags=dict([("autogen", True)]),
|
571
|
-
)
|
572
561
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
573
562
|
"""Method not supported for this class.
|
574
563
|
|
@@ -620,11 +609,6 @@ class IterativeImputer(BaseTransformer):
|
|
620
609
|
subproject=_SUBPROJECT,
|
621
610
|
custom_tags=dict([("autogen", True)]),
|
622
611
|
)
|
623
|
-
@telemetry.add_stmt_params_to_df(
|
624
|
-
project=_PROJECT,
|
625
|
-
subproject=_SUBPROJECT,
|
626
|
-
custom_tags=dict([("autogen", True)]),
|
627
|
-
)
|
628
612
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
629
613
|
"""Impute all missing values in `X`
|
630
614
|
For more details on this function, see [sklearn.impute.IterativeImputer.transform]
|
@@ -683,7 +667,8 @@ class IterativeImputer(BaseTransformer):
|
|
683
667
|
if False:
|
684
668
|
self.fit(dataset)
|
685
669
|
assert self._sklearn_object is not None
|
686
|
-
|
670
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
671
|
+
return labels
|
687
672
|
else:
|
688
673
|
raise NotImplementedError
|
689
674
|
|
@@ -719,6 +704,7 @@ class IterativeImputer(BaseTransformer):
|
|
719
704
|
output_cols = []
|
720
705
|
|
721
706
|
# Make sure column names are valid snowflake identifiers.
|
707
|
+
assert output_cols is not None # Make MyPy happy
|
722
708
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
723
709
|
|
724
710
|
return rv
|
@@ -729,11 +715,6 @@ class IterativeImputer(BaseTransformer):
|
|
729
715
|
subproject=_SUBPROJECT,
|
730
716
|
custom_tags=dict([("autogen", True)]),
|
731
717
|
)
|
732
|
-
@telemetry.add_stmt_params_to_df(
|
733
|
-
project=_PROJECT,
|
734
|
-
subproject=_SUBPROJECT,
|
735
|
-
custom_tags=dict([("autogen", True)]),
|
736
|
-
)
|
737
718
|
def predict_proba(
|
738
719
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
739
720
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -774,11 +755,6 @@ class IterativeImputer(BaseTransformer):
|
|
774
755
|
subproject=_SUBPROJECT,
|
775
756
|
custom_tags=dict([("autogen", True)]),
|
776
757
|
)
|
777
|
-
@telemetry.add_stmt_params_to_df(
|
778
|
-
project=_PROJECT,
|
779
|
-
subproject=_SUBPROJECT,
|
780
|
-
custom_tags=dict([("autogen", True)]),
|
781
|
-
)
|
782
758
|
def predict_log_proba(
|
783
759
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
784
760
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -815,16 +791,6 @@ class IterativeImputer(BaseTransformer):
|
|
815
791
|
return output_df
|
816
792
|
|
817
793
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
818
|
-
@telemetry.send_api_usage_telemetry(
|
819
|
-
project=_PROJECT,
|
820
|
-
subproject=_SUBPROJECT,
|
821
|
-
custom_tags=dict([("autogen", True)]),
|
822
|
-
)
|
823
|
-
@telemetry.add_stmt_params_to_df(
|
824
|
-
project=_PROJECT,
|
825
|
-
subproject=_SUBPROJECT,
|
826
|
-
custom_tags=dict([("autogen", True)]),
|
827
|
-
)
|
828
794
|
def decision_function(
|
829
795
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
830
796
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -923,11 +889,6 @@ class IterativeImputer(BaseTransformer):
|
|
923
889
|
subproject=_SUBPROJECT,
|
924
890
|
custom_tags=dict([("autogen", True)]),
|
925
891
|
)
|
926
|
-
@telemetry.add_stmt_params_to_df(
|
927
|
-
project=_PROJECT,
|
928
|
-
subproject=_SUBPROJECT,
|
929
|
-
custom_tags=dict([("autogen", True)]),
|
930
|
-
)
|
931
892
|
def kneighbors(
|
932
893
|
self,
|
933
894
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -987,18 +948,28 @@ class IterativeImputer(BaseTransformer):
|
|
987
948
|
# For classifier, the type of predict is the same as the type of label
|
988
949
|
if self._sklearn_object._estimator_type == 'classifier':
|
989
950
|
# label columns is the desired type for output
|
990
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
951
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
991
952
|
# rename the output columns
|
992
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
953
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
954
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
955
|
+
([] if self._drop_input_cols else inputs)
|
956
|
+
+ outputs)
|
957
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
958
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
959
|
+
# Clusterer returns int64 cluster labels.
|
960
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
961
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
993
962
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
994
963
|
([] if self._drop_input_cols else inputs)
|
995
964
|
+ outputs)
|
965
|
+
|
996
966
|
# For regressor, the type of predict is float64
|
997
967
|
elif self._sklearn_object._estimator_type == 'regressor':
|
998
968
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
999
969
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1000
970
|
([] if self._drop_input_cols else inputs)
|
1001
971
|
+ outputs)
|
972
|
+
|
1002
973
|
for prob_func in PROB_FUNCTIONS:
|
1003
974
|
if hasattr(self, prob_func):
|
1004
975
|
output_cols_prefix: str = f"{prob_func}_"
|